
Daniele Loiacono

Design of Parallel Programs
Algoritmi e Calcolo Parallelo

Daniele Loiacono

References

q  The material in this set of slide is taken from two tutorials by Blaise
Barney from the Lawrence Livermore National Laboratory and from
slides of prof. Lanzi (Informatica B, A.A. 2009/2010)

q  Introduction to Parallel Computing
Blaise Barney, Lawrence Livermore National Laboratory
https://computing.llnl.gov/tutorials/parallel_comp/

q  Also available as Dr.Dobb’s “Go Parallel”
Introduction to Parallel Computing: Part 2
Blaise Barney, Lawrence Livermore National Laboratory

Parallel program design

Daniele Loiacono

Steps to Parallelization

Understand the Problem and the Program

Partitioning
(domain vs functional decomposition)

Communication

(cost, latency, bandwidth, visibility,
synchronization, etc.)

Data Dependencies

Daniele Loiacono

Understand the Problem and the Program

q  Problem A: Calculate the potential energy for each of several
thousand independent conformations of a molecule. When
done, find the minimum energy conformation.

q  Problem B: Calculation of the Fibonacci series
(1,1,2,3,5,8,13,21,...) by use of the formula: F(k+2)=F(k
+1)+F(k)

Which one can be parallelized?
Why?

Daniele Loiacono

Understand the Problem and the Program

q  Identify the program's hotspots
" Know where most of the real work is being done
" Most programs accomplish most of their work in a few places.

(profilers and performance analysis tools)
" Focus on parallelizing the hotspots

q  Identify bottlenecks in the program
" Are there areas that are disproportionately slow, or cause

parallelizable work to halt or be deferred? (I/O)
" May be possible to restructure the program or use a different

algorithm to reduce or eliminate unnecessary slow areas

q  Identify inhibitors to parallelism
" Data dependence, …

q  Investigate other algorithms if possible

Daniele Loiacono

Decomposition or Partitioning

q  One of the first steps in designing a parallel program

q  Break the problem into discrete "chunks" of work that can be
distributed to multiple tasks. This is known as decomposition
or partitioning.

q  Two ways to partition computation among parallel tasks
" Domain decomposition
" Functional decomposition

Daniele Loiacono

Domain Decomposition
(Focus on the data)

q  The data associated with a problem is decomposed
q  Each parallel task then works on a portion of the data

Daniele Loiacono

Functional Decomposition
(Focus on the computation)

q  The focus is on the computation that is to be performed rather than
on the data manipulated by the computation

q  The problem is decomposed according to the work that must be
done. Each task then performs a portion of the overall work.

q  Functional decomposition lends itself well to problems that can be
split into different tasks.

Daniele Loiacono

Designing Parallel Programs:
Communication

q  Communications between tasks depends upon the problem

q  No Need for communications
" Problems that can be decomposed and executed in parallel with

virtually no need for tasks to share data.
" Example: image processing where computation is local
" Often called embarrassingly parallel because they are so

straight-forward

q  Need for communication
" Most parallel applications require tasks to share data
" Example: a 3-D heat diffusion problem requires a task to know

the temperatures calculated by the tasks that have neighboring
data. Changes to neighboring data has a direct effect on that
task's data.

Daniele Loiacono

What Factors to Consider?

q  Cost of Communications
" Inter-task communication always implies overhead
" Resources are used to package/transmit data instead of computation
" Communications frequently require some type of synchronization

between tasks, which can result in tasks spending time "waiting" instead
of doing work

" Competing communication traffic can saturate the available network
bandwidth, further aggravating performance problems

q  Latency vs. Bandwidth
" latency is the time it takes to send a minimal (0 byte) message from

point A to point B. Commonly expressed as microseconds
" bandwidth is the amount of data that can be communicated per unit of

time. Commonly expressed as megabytes/sec or gigabytes/sec
" Sending many small messages can cause latency to dominate

communication overheads.
" Often it is more efficient to package small messages into a larger

message, thus increasing the effective communications bandwidth

Daniele Loiacono

What Factors to Consider?

q  Visibility of communications
" With the Message Passing Model, communications are explicit and

generally quite visible and under the control of the programmer
" With the Data Parallel Model, communications often occur transparently

to the programmer, particularly on distributed memory architectures.
The programmer may not even be able to know exactly how inter-task
communications are being accomplished

q  Synchronous vs. asynchronous communications
" Synchronous communications require handshaking between tasks that

are sharing data (explicitly encoded or transparent to the programmer)
" Synchronous communications are blocking since other work must wait

until the communications have completed.
" Asynchronous communications allow tasks to transfer data

independently from one another
" Asynchronous communications are non-blocking since other work can be

done while the communications are taking place
" Interleaving computation with communication is the single greatest

benefit for using asynchronous communications

Daniele Loiacono

What Factors to Consider?
Scope of the Communication

q  Knowing which tasks must communicate with each other is critical during
the design stage of a parallel code

q  Point-to-point - involves two tasks with one task acting as the sender/
producer of data, and the other acting as the receiver/consumer.

q  Collective - involves data
sharing between more than
two tasks, which are often
specified as being members
in a common group, or
collective. Some common
variations (there are more)

Daniele Loiacono

What Factors to Consider?

q  Efficiency of communications
" The programmer often has a choice with regard to factors that can affect

communications performance.
" Which implementation for a given model should be used? Using the

Message Passing Model as an example, one MPI implementation may be
faster on a given hardware platform than another.

" What type of communication operations should be used? As mentioned
previously, asynchronous communication operations can improve overall
program performance.

" Network media - some platforms may offer more than one network for
communications. Which one is best?

Daniele Loiacono

What Factors to Consider?
Overhead and Complexity

Daniele Loiacono

Design of Parallel Program:
Synchronization

q  Barrier
" Usually implies that all tasks are involved
" Each task performs its work until it reaches the barrier, then it "blocks"
" When the last task reaches the barrier, all tasks are synchronized
" What happens from here varies (serial section, release the tasks, etc.)

q  Lock/Semaphore
" Can involve any number of tasks
" Typically used to serialize (protect) access to global data or a section of

code. Only one task at a time may use the lock/semaphore/flag
" The first task to acquire the lock "sets" it. This task can then safely

(serially) access the protected data or code.
" Other tasks can attempt to acquire the lock but must wait until the task

that owns the lock releases it.
" Can be blocking or non-blocking

q  Synchronous communication operations
" Involves only those tasks executing a communication operation
" When a task performs a communication operation, some form of

coordination is required with the other task(s) participating in the
communication.

Daniele Loiacono

Designing Parallel Programs
Data Dependencies

q  Definition:
" A dependence exists between program statements when

the order of statement execution affects the results of the
program.

" A data dependence results from multiple use of the same
location(s) in storage by different tasks.

q  Dependencies are important to parallel programming
because they are one of the primary inhibitors to parallelism.

q  Example (Loop carried data dependence)
for (int i=1; i<500; i++)

 a[i]=a[i-1] * 2;
" The value of a[i-1] must be computed before the value

of a[i-1], therefore a[i] exhibits a data dependency on
A(J-1). Parallelism is inhibited.

Load balancing…

Daniele Loiacono

Designing Parallel Programs:
Load Balancing

q  Load balancing refers to the practice of distributing work among
tasks so that all tasks are kept busy all of the time. It can be
considered a minimization of task idle time

q  Load balancing is important to parallel programs for performance
reasons. For example, if all tasks are subject to a barrier
synchronization point, the slowest task will determine the overall
performance

Daniele Loiacono

How to Achieve Load Balance?
Equally Partition the Work

q  For array/matrix operations where each task performs
similar work, evenly distribute the data set among the tasks

q  For loop iterations where the work done in each iteration is
similar, evenly distribute the iterations across the tasks.

q  If a heterogeneous mix of machines with varying
performance characteristics are being used, be sure to use
some type of performance analysis tool to detect any load
imbalances. Adjust work accordingly.

Daniele Loiacono

How to Achieve Load Balance?
Use Dynamic Work Assignment

q  Certain classes of problems result in load imbalances even if data is

evenly distributed among tasks:
" Sparse arrays - some tasks will have actual data to work on

while others have mostly "zeros".
" Adaptive grid methods - some tasks may need to refine their

mesh while others don't.
" N-body simulations - where some particles may migrate to/from

their original task domain to another task's; where the particles
owned by some tasks require more work than those owned by
other tasks.

q  When the amount of work each task will perform is intentionally
variable, or is unable to be predicted, it may be helpful to use a
scheduler - task pool approach. As each task finishes its work, it
queues to get a new piece of work.

q  It may become necessary to design an algorithm which detects and
handles load imbalances as they occur dynamically within the code.

Granularity

Daniele Loiacono

Designing Parallel Programs
Granularity

q  Computation/Communication Ratio
" Granularity is a qualitative measure of the ratio

of computation to communication.
" Periods of computation are typically separated

from periods of communication by
synchronization events.

q  Fine-grain Parallelism
" Relatively small amounts of computational work

are done between communication events
" Low computation to communication ratio
" Facilitates load balancing
" Implies high communication overhead and less

opportunity for performance enhancement
" If granularity is too fine it is possible that the

overhead required for communications and
synchronization between tasks takes longer than
the computation.

Daniele Loiacono

Designing Parallel Programs
Granularity

q  Coarse-grain Parallelism
" Relatively large amounts of computational work are done

between communication/synchronization events
" High computation to communication ratio
" Implies more opportunity for performance increase
" Harder to load balance efficiently

q  Which is Best?
" The most efficient granularity is dependent on the algorithm and

the hardware environment in which it runs.
" In most cases the overhead associated with communications

and synchronization is high relative to execution speed so it is
advantageous to have coarse granularity.

" Fine-grain parallelism can help reduce overheads due to load
imbalance.

Input/output…

Daniele Loiacono

Designing Parallel Programs:
Input/Output

q  The Bad News
" I/O operations are generally regarded as inhibitors to parallelism
" Parallel I/O systems may be immature or not available
" In an environment where all tasks see the same file space,

write operations can result in file overwriting
" Read operations can be affected by the file server's ability to

handle multiple read requests at the same time
" I/O that must be conducted over the network (NFS, non-local)

can cause severe bottlenecks and even crash file servers
q  The Good News

" Parallel file systems are available
" Examples: General Parallel File System for AIX by IBM; Lustre:

for Linux clusters by SUN Microsystems, PVFS/PVFS2: Parallel
Virtual File System for Linux clusters; etc.

" The parallel I/O programming interface specification for MPI has
been available since 1996 as part of MPI-2. Vendor and "free"
implementations are now commonly available.

Daniele Loiacono

Some Options for Managing I/O

q  If you have access to a parallel file system, investigate using it

q  Rule #1: Reduce overall I/O as much as possible

q  Confine I/O to specific serial portions of the job, and then use
parallel communications to distribute data to parallel tasks. For
example, Task 1 could read an input file and then communicate
required data to other tasks. Likewise, Task 1 could perform write
operation after receiving required data from all other tasks.

q  For distributed memory systems with shared filespace, perform I/O
in local, non-shared filespace. For example, each processor may
have /tmp filespace which can used. This is usually much more
efficient than performing I/O over the network to one's home
directory.

q  Create unique filenames for each task's input/output file(s)

Limits and costs…

Daniele Loiacono

Designing Parallel Programs:
Speedup

q  Amdahl's Law states that potential
program speedup is defined by the
fraction of code (P) that can be
parallelized:

 speedup = 1/(1-P)

Daniele Loiacono

Designing Parallel Programs:
Speedup

q  Introducing the number of processors performing the parallel
fraction of work, the relationship can be modeled by

speedup = 1/(P/N+S)

 where P = parallel fraction,
N = number of processors,
and S = serial fraction.

q  It soon becomes obvious
that there are limits to
the scalability of parallelism.

Daniele Loiacono

Designing Parallel Programs:
Speedup and Scalability

q  However, certain problems demonstrate increased performance by
increasing the problem size. For example:

 2D Grid Calculations 85 seconds 85%
 Serial fraction 15 seconds 15%

q  We can increase the problem size by doubling the grid dimensions
and halving the time step. This results in four times the number of
grid points and twice the number of time steps. The timings then
look like:

 2D Grid Calculations 680 seconds 97.84%
 Serial fraction 15 seconds 2.16%

q  Problems that increase the percentage of parallel time with their
size are more scalable than problems with a fixed percentage of
parallel time.

Daniele Loiacono

Designing Parallel Programs:
Complexity

q  Parallel applications are much more complex than corresponding
serial applications, perhaps an order of magnitude.

q  Not only do you have multiple instruction streams executing at the
same time, but you also have data flowing between them.

q  The costs of complexity are measured in programmer time in
virtually every aspect of the software development cycle: design,
coding, debugging, tuning and maintenance.

q  Adhering to "good" software development practices is essential
when working with parallel applications - especially if somebody
besides you will have to work with the software.

Daniele Loiacono

Designing Parallel Programs:
Portability

q  Standardization in several APIs, such as MPI, POSIX threads, HPF
and OpenMP, has reduced the portability issues of the years past.

q  All of the usual portability issues associated with serial programs
apply to parallel programs. For example, if you use vendor
"enhancements" to Fortran, C or C++, portability will be a problem

q  Even though standards exist for several APIs, implementations will
differ in a number of details, sometimes to the point of requiring
code modifications in order to effect portability

q  Operating systems can play a key role in code portability issues

q  Hardware architectures are characteristically highly variable and
can affect portability

Daniele Loiacono

Designing Parallel Programs:
Resource Requirements

q  Parallel programming aims at decreasing execution wall clock time,
but it achieves this by using more CPUs

q  For example, a parallel code that runs in 1 hour on 8 processors
actually uses 8 hours of CPU time.

q  The amount of memory required can be greater for parallel codes,
due to the need to replicate data and for overheads associated with
parallel support libraries and subsystems.

q  For short running parallel programs, there can actually be a
decrease in performance compared to a similar serial
implementation.

q  The overhead costs associated with setting up the parallel
environment, task creation, communications and task termination
can comprise a significant portion of the total execution time for
short runs.

Daniele Loiacono

Designing Parallel Programs:
Scalability

q  The ability of a parallel program's performance to scale is a result of
a number of interrelated factors. Simply adding more machines is
rarely the answer.

q  The algorithm may have inherent limits to scalability. At some
point, adding more resources causes performance to decrease. Most
parallel solutions demonstrate this characteristic at some point.

q  Hardware factors play a significant role in scalability.

q  Parallel support libraries and subsystems software can limit
scalability independent of your application.

Examples…

Daniele Loiacono

Array Processing

q  Problem: calculations on 2-dimensional array elements, with
the computation on each array element being independent
from other array elements.

q  Serial Solution

for(i=0; i<n; i++)

 for(j=0; j<n; j++)
 a[i][j] = fcn(i,j)

q  The calculation of elements is
independent of one another

q  Leads to an embarrassingly
parallel situation.

Daniele Loiacono

Array Processing:
Parallel Solution

q  Arrays elements are distributed so
that each processor owns a portion
of an array (subarray).

q  Independent calculation of array
elements insures there is no need
for communication between tasks.

q  After the array is distributed, each task executes the portion of the
loop corresponding to the data it owns. For example,

 for(i=start_block; i<end_block; i++)

 for(j=0; j<n; j++)
 a[i][j] = fcn(i,j)

Daniele Loiacono

PI Computation

q  Method of approximating PI
" Inscribe a circle in a square
" Randomly generate points in the square
" Compute the number of points in

the square that are also in the circle
" Let x be the number of points in the circle

divided by the number of points in the square
" PI ~ 4 x

q  The more points generated,
the better the approximation

 npoints = 10000; circle_count = 0;
 for(j=1, j<npoints; j++) {

 xcoordinate = random1;

 ycoordinate = random2;

 if (xcoordinate, ycoordinate) inside circle

 then circle_count = circle_count + 1

 }
PI = 4.0*circle_count/npoints

Daniele Loiacono

PI Computation
Parallel Solution

q  Embarrassingly parallel solution
" Computationally intensive
" Minimal communication
" Minimal I/O

q  Parallelization: break the loop into portions that can be
executed by the tasks.

q  For the task of approximating PI:
" Each task executes its portion of the loop
" Each task can do its work without requiring any

information from the other tasks (no data dependencies).
" Uses the SPMD model. One task acts as master and

collects the results.

Daniele Loiacono

PI Computation
Parallel Solution

npoints = 10000; circle_count = 0;
p = number of tasks; num = npoints/p;

find out if I am MASTER or WORKER

for(j=1, j<num; j++) {

 x = random();

 y = random();

 if ((x, y) inside circle)

 circle_count = circle_count + 1

}

if I am MASTER

 receive from WORKERS their circle_counts

 compute PI (use MASTER and WORKER calculations)

else if I am WORKER {

 send to MASTER circle_count

}

