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https://computing.llnl.gov/tutorials/parallel_comp/ 

q  Also available as Dr.Dobb’s “Go Parallel” 
Introduction to Parallel Computing: Part 2 
Blaise Barney, Lawrence Livermore National Laboratory 



Parallel program design 



Daniele Loiacono 

Steps to Parallelization 
 

Understand the Problem and the Program 
 

Partitioning 
(domain vs functional decomposition) 

 
Communication 

(cost, latency, bandwidth, visibility, 
synchronization, etc.) 

 
Data Dependencies 
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Understand the Problem and the Program 

q  Problem A: Calculate the potential energy for each of several 
thousand independent conformations of a molecule. When 
done, find the minimum energy conformation. 

q  Problem B: Calculation of the Fibonacci series 
(1,1,2,3,5,8,13,21,...) by use of the formula: F(k+2)=F(k
+1)+F(k) 

Which one can be parallelized? 
Why? 
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Understand the Problem and the Program 

q  Identify the program's hotspots 
" Know where most of the real work is being done 
" Most programs accomplish most of their work in a few places. 

(profilers and performance analysis tools) 
" Focus on parallelizing the hotspots 

q  Identify bottlenecks in the program 
" Are there areas that are disproportionately slow, or cause 

parallelizable work to halt or be deferred? (I/O) 
" May be possible to restructure the program or use a different 

algorithm to reduce or eliminate unnecessary slow areas 

q  Identify inhibitors to parallelism 
" Data dependence, … 

q  Investigate other algorithms if possible 
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Decomposition or Partitioning 

q  One of the first steps in designing a parallel program 

q  Break the problem into discrete "chunks" of work that can be 
distributed to multiple tasks. This is known as decomposition 
or partitioning. 

q  Two ways to partition computation among parallel tasks 
" Domain decomposition 
" Functional decomposition 
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Domain Decomposition 
(Focus on the data) 

q  The data associated with a problem is decomposed 
q  Each parallel task then works on a portion of the data 
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Functional Decomposition 
(Focus on the computation) 

q  The focus is on the computation that is to be performed rather than 
on the data manipulated by the computation 

q  The problem is decomposed according to the work that must be 
done. Each task then performs a portion of the overall work. 

q  Functional decomposition lends itself well to problems that can be 
split into different tasks. 
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Designing Parallel Programs: 
Communication 

q  Communications between tasks depends upon the problem 

q  No Need for communications 
" Problems that can be decomposed and executed in parallel with 

virtually no need for tasks to share data.  
" Example: image processing where computation is local 
" Often called embarrassingly parallel because they are so 

straight-forward 

q  Need for communication 
" Most parallel applications require tasks to share data 
" Example: a 3-D heat diffusion problem requires a task to know 

the temperatures calculated by the tasks that have neighboring 
data. Changes to neighboring data has a direct effect on that 
task's data. 
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What Factors to Consider? 

q  Cost of Communications 
" Inter-task communication always implies overhead 
" Resources are used to package/transmit data instead of computation 
" Communications frequently require some type of synchronization 

between tasks, which can result in tasks spending time "waiting" instead 
of doing work 

" Competing communication traffic can saturate the available network 
bandwidth, further aggravating performance problems 

q  Latency vs. Bandwidth 
" latency is the time it takes to send a minimal (0 byte) message from 

point A to point B. Commonly expressed as microseconds 
" bandwidth is the amount of data that can be communicated per unit of 

time. Commonly expressed as megabytes/sec or gigabytes/sec 
" Sending many small messages can cause latency to dominate 

communication overheads.  
" Often it is more efficient to package small messages into a larger 

message, thus increasing the effective communications bandwidth 
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What Factors to Consider? 

q  Visibility of communications  
" With the Message Passing Model, communications are explicit and 

generally quite visible and under the control of the programmer 
" With the Data Parallel Model, communications often occur transparently 

to the programmer, particularly on distributed memory architectures. 
The programmer may not even be able to know exactly how inter-task 
communications are being accomplished 

q  Synchronous vs. asynchronous communications  
" Synchronous communications require handshaking between tasks that 

are sharing data (explicitly encoded or transparent to the programmer) 
" Synchronous communications are blocking since other work must wait 

until the communications have completed. 
" Asynchronous communications allow tasks to transfer data 

independently from one another  
" Asynchronous communications are non-blocking since other work can be 

done while the communications are taking place 
" Interleaving computation with communication is the single greatest 

benefit for using asynchronous communications 



Daniele Loiacono 

What Factors to Consider? 
Scope of the Communication 

q  Knowing which tasks must communicate with each other is critical during 
the design stage of a parallel code 

q  Point-to-point - involves two tasks with one task acting as the sender/
producer of data, and the other acting as the receiver/consumer. 

q  Collective - involves data  
sharing between more than  
two tasks, which are often  
specified as being members  
in a common group, or  
collective. Some common  
variations (there are more) 
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What Factors to Consider? 

q  Efficiency of communications  
" The programmer often has a choice with regard to factors that can affect 

communications performance.  
" Which implementation for a given model should be used? Using the 

Message Passing Model as an example, one MPI implementation may be 
faster on a given hardware platform than another. 

" What type of communication operations should be used? As mentioned 
previously, asynchronous communication operations can improve overall 
program performance. 

" Network media - some platforms may offer more than one network for 
communications. Which one is best? 
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What Factors to Consider? 
Overhead and Complexity 
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Design of Parallel Program: 
Synchronization 

q  Barrier 
" Usually implies that all tasks are involved 
" Each task performs its work until it reaches the barrier, then it "blocks" 
" When the last task reaches the barrier, all tasks are synchronized 
" What happens from here varies (serial section, release the tasks, etc.) 

q  Lock/Semaphore 
" Can involve any number of tasks 
" Typically used to serialize (protect) access to global data or a section of 

code. Only one task at a time may use the lock/semaphore/flag 
" The first task to acquire the lock "sets" it. This task can then safely 

(serially) access the protected data or code. 
" Other tasks can attempt to acquire the lock but must wait until the task 

that owns the lock releases it. 
" Can be blocking or non-blocking 

q  Synchronous communication operations 
" Involves only those tasks executing a communication operation 
" When a task performs a communication operation, some form of 

coordination is required with the other task(s) participating in the 
communication.  
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Designing Parallel Programs 
Data Dependencies 

q  Definition: 
" A dependence exists between program statements when 

the order of statement execution affects the results of the 
program. 

" A data dependence results from multiple use of the same 
location(s) in storage by different tasks. 

q  Dependencies are important to parallel programming 
because they are one of the primary inhibitors to parallelism. 

q   Example (Loop carried data dependence) 
for (int i=1; i<500; i++)   

  a[i]=a[i-1] * 2; 
" The value of a[i-1] must be computed before the value 

of a[i-1], therefore a[i] exhibits a data dependency on 
A(J-1). Parallelism is inhibited. 



Load balancing… 
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Designing Parallel Programs: 
Load Balancing 

q  Load balancing refers to the practice of distributing work among 
tasks so that all tasks are kept busy all of the time. It can be 
considered a minimization of task idle time 

q  Load balancing is important to parallel programs for performance 
reasons. For example, if all tasks are subject to a barrier 
synchronization point, the slowest task will determine the overall 
performance 
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How to Achieve Load Balance? 
Equally Partition the Work 

q  For array/matrix operations where each task performs 
similar work, evenly distribute the data set among the tasks 

q  For loop iterations where the work done in each iteration is 
similar, evenly distribute the iterations across the tasks. 

q  If a heterogeneous mix of machines with varying 
performance characteristics are being used, be sure to use 
some type of performance analysis tool to detect any load 
imbalances. Adjust work accordingly. 
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How to Achieve Load Balance? 
Use Dynamic Work Assignment 
 
q  Certain classes of problems result in load imbalances even if data is 

evenly distributed among tasks: 
" Sparse arrays - some tasks will have actual data to work on 

while others have mostly "zeros".   
" Adaptive grid methods - some tasks may need to refine their 

mesh while others don't. 
" N-body simulations - where some particles may migrate to/from 

their original task domain to another task's; where the particles 
owned by some tasks require more work than those owned by 
other tasks. 

q  When the amount of work each task will perform is intentionally 
variable, or is unable to be predicted, it may be helpful to use a 
scheduler - task pool approach. As each task finishes its work, it 
queues to get a new piece of work. 

q  It may become necessary to design an algorithm which detects and 
handles load imbalances as they occur dynamically within the code. 



Granularity 
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Designing Parallel Programs 
Granularity 

q  Computation/Communication Ratio 
" Granularity is a qualitative measure of the ratio  

of computation to communication. 
" Periods of computation are typically separated 

from periods of communication by 
synchronization events. 

q  Fine-grain Parallelism 
" Relatively small amounts of computational work 

are done between communication events 
" Low computation to communication ratio 
" Facilitates load balancing 
" Implies high communication overhead and less 

opportunity for performance enhancement 
" If granularity is too fine it is possible that the 

overhead required for communications and 
synchronization between tasks takes longer than 
the computation. 
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Designing Parallel Programs 
Granularity 

q  Coarse-grain Parallelism 
" Relatively large amounts of computational work are done 

between communication/synchronization events 
" High computation to communication ratio 
" Implies more opportunity for performance increase 
" Harder to load balance efficiently 
 

q  Which is Best? 
" The most efficient granularity is dependent on the algorithm and 

the hardware environment in which it runs. 
" In most cases the overhead associated with communications 

and synchronization is high relative to execution speed so it is 
advantageous to have coarse granularity. 

" Fine-grain parallelism can help reduce overheads due to load 
imbalance. 



Input/output… 
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Designing Parallel Programs: 
Input/Output 

q  The Bad News 
" I/O operations are generally regarded as inhibitors to parallelism 
" Parallel I/O systems may be immature or not available 
" In an environment where all tasks see the same file space,  

write operations can result in file overwriting 
" Read operations can be affected by the file server's ability to 

handle multiple read requests at the same time 
" I/O that must be conducted over the network (NFS, non-local) 

can cause severe bottlenecks and even crash file servers 
q   The Good News 

" Parallel file systems are available  
" Examples: General Parallel File System for AIX by IBM; Lustre: 

for Linux clusters by SUN Microsystems,  PVFS/PVFS2: Parallel 
Virtual File System for Linux clusters; etc. 

" The parallel I/O programming interface specification for MPI has 
been available since 1996 as part of MPI-2. Vendor and "free" 
implementations are now commonly available. 
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Some Options for Managing I/O 

q  If you have access to a parallel file system, investigate using it 

q  Rule #1: Reduce overall I/O as much as possible 

q  Confine I/O to specific serial portions of the job, and then use 
parallel communications to distribute data to parallel tasks. For 
example, Task 1 could read an input file and then communicate 
required data to other tasks. Likewise, Task 1 could perform write 
operation after receiving required data from all other tasks. 

q  For distributed memory systems with shared filespace, perform I/O 
in local, non-shared filespace. For example, each processor may 
have /tmp filespace which can used. This is usually much more 
efficient than performing I/O over the network to one's home 
directory. 

q  Create unique filenames for each task's input/output file(s) 



Limits and costs… 
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Designing Parallel Programs: 
Speedup 

q  Amdahl's Law states that potential 
program speedup is defined by the 
fraction of code (P) that can be 
parallelized: 

 speedup = 1/(1-P) 
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Designing Parallel Programs: 
Speedup 

q  Introducing the number of processors performing the parallel 
fraction of work, the relationship can be modeled by 

speedup = 1/(P/N+S) 
  
 where P = parallel fraction,  
N = number of processors,  
and S = serial fraction. 

q  It soon becomes obvious  
that there are limits to  
the scalability of parallelism.  



Daniele Loiacono 

Designing Parallel Programs: 
Speedup and Scalability 

q  However, certain problems demonstrate increased performance by 
increasing the problem size. For example: 

 
  2D Grid Calculations  85 seconds   85% 
  Serial fraction           15 seconds   15% 

q  We can increase the problem size by doubling the grid dimensions 
and halving the time step. This results in four times the number of 
grid points and twice the number of time steps. The timings then 
look like: 

  2D Grid Calculations  680 seconds   97.84% 
  Serial fraction                15 seconds    2.16% 

q  Problems that increase the percentage of parallel time with their 
size are more scalable than problems with a fixed percentage of 
parallel time. 
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Designing Parallel Programs: 
Complexity 

q  Parallel applications are much more complex than corresponding 
serial applications, perhaps an order of magnitude.  

q  Not only do you have multiple instruction streams executing at the 
same time, but you also have data flowing between them. 

q  The costs of complexity are measured in programmer time in 
virtually every aspect of the software development cycle: design, 
coding, debugging, tuning and maintenance. 

q  Adhering to "good" software development practices is essential 
when working with parallel applications - especially if somebody 
besides you will have to work with the software. 
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Designing Parallel Programs: 
Portability 

q  Standardization in several APIs, such as MPI, POSIX threads, HPF 
and OpenMP, has reduced the portability issues of the years past.  

q  All of the usual portability issues associated with serial programs 
apply to parallel programs. For example, if you use vendor 
"enhancements" to Fortran, C or C++, portability will be a problem 

q  Even though standards exist for several APIs, implementations will 
differ in a number of details, sometimes to the point of requiring 
code modifications in order to effect portability 

q  Operating systems can play a key role in code portability issues 

q  Hardware architectures are characteristically highly variable and 
can affect portability 
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Designing Parallel Programs: 
Resource Requirements 

q  Parallel programming aims at decreasing execution wall clock time, 
but it achieves this by using more CPUs 

q  For example, a parallel code that runs in 1 hour on 8 processors 
actually uses 8 hours of CPU time. 

q  The amount of memory required can be greater for parallel codes, 
due to the need to replicate data and for overheads associated with 
parallel support libraries and subsystems. 

q  For short running parallel programs, there can actually be a 
decrease in performance compared to a similar serial 
implementation.  

q  The overhead costs associated with setting up the parallel 
environment, task creation, communications and task termination 
can comprise a significant portion of the total execution time for 
short runs. 
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Designing Parallel Programs: 
Scalability 

q  The ability of a parallel program's performance to scale is a result of 
a number of interrelated factors. Simply adding more machines is 
rarely the answer. 

q  The algorithm may have inherent limits to scalability. At some 
point, adding more resources causes performance to decrease. Most 
parallel solutions demonstrate this characteristic at some point. 

q  Hardware factors play a significant role in scalability.  

q  Parallel support libraries and subsystems software can limit 
scalability independent of your application. 



Examples… 
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Array Processing 

q  Problem: calculations on 2-dimensional array elements, with 
the computation on each array element being independent 
from other array elements. 

q  Serial Solution 
 
for(i=0; i<n; i++) 

 for(j=0; j<n; j++) 
  a[i][j] = fcn(i,j) 

q  The calculation of elements is  
independent of one another 

q  Leads to an embarrassingly  
parallel situation. 
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Array Processing: 
Parallel Solution 

q  Arrays elements are distributed so  
that each processor owns a portion  
of an array (subarray). 

q  Independent calculation of array  
elements insures there is no need  
for communication between tasks. 

q  After the array is distributed, each task executes the portion of the 
loop corresponding to the data it owns. For example,  

  
 for(i=start_block; i<end_block; i++) 

 for(j=0; j<n; j++) 
  a[i][j] = fcn(i,j)  
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PI Computation 

q  Method of approximating PI 
" Inscribe a circle in a square 
" Randomly generate points in the square 
" Compute the number of points in  

the square that are also in the circle 
" Let x be the number of points in the circle  

divided by the number of points in the square 
" PI ~ 4 x 

q  The more points generated,  
the better the approximation 

 
 npoints = 10000; circle_count = 0; 
 for(j=1, j<npoints; j++) { 

  xcoordinate = random1; 

  ycoordinate = random2; 

  if (xcoordinate, ycoordinate) inside circle 

   then circle_count = circle_count + 1 

 } 
PI = 4.0*circle_count/npoints 
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PI Computation 
Parallel Solution 

q  Embarrassingly parallel solution 
" Computationally intensive 
" Minimal communication 
" Minimal I/O  

q  Parallelization: break the loop into portions that can be 
executed by the tasks. 

q  For the task of approximating PI: 
" Each task executes its portion of the loop 
" Each task can do its work without requiring any 

information from the other tasks (no data dependencies). 
" Uses the SPMD model. One task acts as master and 

collects the results. 
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PI Computation 
Parallel Solution 

npoints = 10000; circle_count = 0; 
p = number of tasks; num = npoints/p; 

 

find out if I am MASTER or WORKER  

 

for(j=1, j<num; j++) { 

   x = random(); 

 y = random(); 

 if ((x, y) inside circle) 

    circle_count = circle_count + 1 

} 

 

if I am MASTER 

 receive from WORKERS their circle_counts 

  compute PI (use MASTER and WORKER calculations) 

else if I am WORKER { 

  send to MASTER circle_count 

} 

 


