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Optimize Algorithms for the GPU 

q  Maximize independent parallelism 

q  Maximize arithmetic intensity (math/bandwidth) 

q  Sometimes it’s better to recompute than to cache 
" GPU spends its transistors on ALUs, not memory 

q  Do more computation on the GPU to avoid costly data 
transfers 
" Even low parallelism computations can sometimes be 

faster than transferring back and forth to host 
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Optimize Memory Access 

q  Coalesced vs. Non-coalesced = order of magnitude 
" Global/Local device memory 

q  Take advantages of shared memory 
" Hundreds of times faster than global memory 
" Threads can cooperate via shared memory 
" Use one / a few threads to load / compute data shared by 

all threads 
" Use it to avoid non-coalesced access: stage loads and 

stores in shared memory to re-order noncoalesceable 
addressing 

q  In shared memory, avoid high-degree bank conflicts 
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Use Parallelism Efficiently 

q  Partition your computation to keep the GPU multiprocessors 
equally busy 
" Many threads, many thread blocks 

q  Keep resource usage low enough to support multiple active 
thread blocks per multiprocessor 
" Registers, shared memory 
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Thread Scheduling/Execution 

q  Each Thread Blocks is divided in 32-thread 
Warps 
" This is an implementation decision, not 

part of the CUDA programming model 
q  Warps are scheduling units in SM 
q  If 3 blocks are assigned to an SM and each 

Block has 256 threads, how many Warps 
are there in an SM? 
" Each Block is divided into 256/32 = 8 

Warps 
" There are 8 * 3 = 24 Warps  
" At any point in time, only one of the 24 

Warps will be selected for instruction 
fetch and execution. 

… 

t0 t1 t2 … t31 

… 

… 

t0 t1 t2 … t31 

… Block 1 Warps Block 2 Warps 

SP 

SP 

SP 

SP 

SFU 

SP 

SP 

SP 

SP 

SFU 

Instruction Fetch/Dispatch 

Instruction L1 Data L1 

Streaming Multiprocessor 

Shared Memory 



Daniele Loiacono 

SM Warp Scheduling 

q  SM hardware implements zero-overhead Warp 
scheduling 
" Warps whose next instruction has its 

operands ready for consumption are eligible 
for execution 

" Eligible Warps are selected for execution on 
a prioritized scheduling policy 

" All threads in a Warp execute the same 
instruction when selected 

q  4 clock cycles needed to dispatch the same 
instruction for all threads in a Warp in G8x/
G200 
" If one global memory access is needed for 

every 4 instructions 
" A minimal of 13 Warps are needed to fully 

tolerate 200-cycle memory latency 
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Warp scheduler 

warp 1 instruction 42 
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Overview 

q  Optimizing host-device data transfers 
q  Coalescing global data accesses 
q  Using shared memory effectively 
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Host-Device Data Transfers 

q  Device memory to host memory bandwidth much lower than 
device memory to device bandwidth 
" 8GB/s peak (PCI-e x16 Gen 2) vs. 141 GB/s peak (GTX 

280) 
q  Minimize transfers 

" Intermediate data structures can be allocated, operated 
on, and deallocated without ever copying them to host 
memory 

q  Group transfers 
" One large transfer much better than many small ones 
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Global Memory Usage 

q  Why optimizing global memory usage? 
" Global memory is not always cached (e.g., on G8x/GT200) 
" Highest latency instructions: 400-600 clock cycles 
" Likely to be a performance bottleneck 
" Optimizations can greatly increase performance 

q  Optimizing the global memory usage means optimizing the 
access patterns of threads executed at the same time on GPU 

q  Which threads are executed at the same time? 
" Each block of thread is divided in 32-thread warps 
" Warps are groups of threads executed physically in parallel (SIMD) 
" The first or second half of warp are called half-warp 
" This is an implementation decision, not part of the CUDA 

programming model 
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Coalescing (compute capability 1.0 / 1.1) 

q  A coordinated read by a half-warp (16 threads) 
q  A contiguous region of global memory: 

" 64 bytes - each thread reads a word: int, float, … 
" 128 bytes - each thread reads a double-word: int2, float2, 

… 
" 256 bytes – each thread reads a quad-word: int4, float4, … 

q  Additional restrictions: 
" Starting address for a region must be a multiple of region 

size 
" The kth thread in a half-warp must access the kth element 

in a block being read 
q  Exception: not all threads must be participating 

" Predicated access, divergence within a halfwarp 
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Coalescence (1.0/1.1): examples 
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Coalescing (compute capability >= 1.2) 

q  A single memory transaction is issued for a half warp if words 
accessed by all threads lie in the same segment of size equal 
to: 
" 32 bytes if all threads access 8-bit words 
" 64 bytes if all threads access 16-bit words 
" 128 bytes if all threads access 32-bit or 64-bit words 

q  Achieved for any pattern of addresses requested by the half-
warp 
" including patterns where multiple threads access the same address 

q  If a half-warp addresses words in n different segments, n 
memory transactions are issued (one for each segment) 
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Coalescence (1.2): examples 
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Coalescing: Timing Results 

q  Experiment: 
" Kernel: read a float, increment, write back 
" 3M floats (12MB) 
" Times averaged over 10K runs 

q  12K blocks x 256 threads: 
" 356µs – coalesced 
" 357µs – coalesced, some threads don’t participate 
" 3494µs – permuted/misaligned thread access 
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Uncoalesced Access: float3 Case 

q  float3 is 12 bytes 
q  Each thread ends up executing 3 reads 

" sizeof(float3) != 4, 8, or 16 
" Half-warp reads three 64B non-contiguous regions 
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Uncoalesced float3 Code 

__global__ void accessFloat3(float3 *d_in, float3 d_out) 

{ 
 int index = blockIdx.x * blockDim.x + threadIdx.x; 

 float3 a = d_in[index]; 

 a.x += 2; 

 a.y += 3; 

 a.z += 4; 
 d_out[index] = a; 

} 
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Shared Memory 

q  ~Hundred times faster than global memory 

q  Cache data to reduce global memory accesses 

q  Threads can cooperate via shared memory 

q  Use it to avoid non-coalesced access 
" Stage loads and stores in shared memory to re-order 

noncoalesceable addressing 
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Coalescing float3 Access 
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Coalesced Access: float3 Case 

q  Use shared memory to allow coalescing 
" Need sizeof(float3)*(threads/block) bytes of SMEM 
" Each thread reads 3 scalar floats: 

•  Offsets: 0, (threads/block), 2*(threads/block) 
•  These will likely be processed by other threads, so sync 

q  Processing 
" Each thread retrieves its float3 from SMEM array 

•  Cast the SMEM pointer to (float3*) 
•  Use thread ID as index 

" Rest of the compute code does not change! 
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Coalesced float3 Code 
__global__ void accessInt3Shared(float *g_in, 

float *g_out) 

{ 

  int dim = blockDim.x; 

  int index = 3 * blockIdx.x * dim +      
threadIdx.x; 

  __shared__ float s_data[dim*3]; 

  s_data[threadIdx.x] = g_in[index]; 

  s_data[threadIdx.x+dim] = g_in[index+dim]; 

  s_data[threadIdx.x+2*dim]= g_in[index+dim*2]; 

  __syncthreads(); 

  float3 a = ((float3*)s_data)[threadIdx.x]; 

 

  a.x += 2; 

  a.y += 3; 

  a.z += 4; 

 

  ((float3*)s_data)[threadIdx.x] = a; 

  __syncthreads(); 

  g_out[index] = s_data[threadIdx.x]; 

  g_out[index+dim] = s_data[threadIdx.x+dim]; 

  g_out[index+dim*2] = s_data[threadIdx.x+dim*2]; 

} 
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Coalescing: Timing Results 

q  Experiment: 
" Kernel: read a float, increment, write back 
" 3M floats (12MB) 
" Times averaged over 10K runs 

q  12K blocks x 256 threads reading floats: 
" 356µs – coalesced 
" 357µs – coalesced, some threads don’t participate 
" 3494µs – permuted/misaligned thread access 

q  4K blocks x 256 threads reading float3s: 
" 3302µs – float3 uncoalesced 
" 359µs – float3 coalesced through shared memory 



Daniele Loiacono 

Parallel Memory Architecture 

q  Many threads accessing memory 
" Therefore, memory is divided into banks 
" Essential to achieve high bandwidth 

q  Each bank can service one address per cycle 
" A memory can service as many simultaneous accesses as it 

has banks 

q  Multiple simultaneous accesses to a bank result in a bank 
conflict 
" Conflicting accesses are serialized 
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Bank Addressing Examples 

• No bank conflicts 
• Left: linear addressing 

stride == 1 
• Right: random 1:1 

permutation 
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Bank Addressing Examples 

q  Left: 2-way Bank Conflicts 
" Linear addressing stride == 2 

q  Right: 8-way Bank Conflicts 
" Linear addressing stride == 8 
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Shared memory bank conflicts 

q  Shared memory is as fast as registers if there are no bank 
conflicts 

q  The fast cases: 
" If all threads of a half-warp access different banks, there is 

no bank conflict 
" If all threads of a half-warp read the identical address, 

there is no bank conflict (broadcast) 
q  The slow cases: 

" Bank Conflict: multiple threads in the same half-warp 
access the same bank 

" Must serialize the accesses 
" Cost = max # of simultaneous accesses to a single bank 
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How addresses map to banks on G80/
GT200 

q  Bandwidth of each bank is 32 bit per 2 clock cycles 
q  Successive 32-bit words are assigned to successive banks 
q  G80/GT200 have 16 banks 

" So bank = address % 16 
" Same as the size of a half-warp 
" No bank conflicts between different half-warps, only within 

a single half-warp 



Daniele Loiacono 

Matrix Transpose Example 

q  Each thread block transposes an equal sized block of matrix M 
q  Assume M is square (n x n) 
q  What is a good blocksize? 
q  CUDA places limitations on number of threads per block  

" 512 threads per block is the maximum allowed by CUDA 

31 
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Matrix transpose example 

__global__ void transpose_naive(float *odata, float* idata, int 
width, int height, int pitch_in, int pitch_out) 

{ 
   unsigned int xIndex = blockDim.x * blockIdx.x + threadIdx.x; 

   unsigned int yIndex = blockDim.y * blockIdx.y + threadIdx.y; 

    

   if (xIndex < width && yIndex < height) 

   { 
       unsigned int index_in  = xIndex + pitch_in * yIndex; 

       unsigned int index_out = yIndex + pitch_out * xIndex; 

       odata[index_out] = idata[index_in];  

   } 

} 
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Uncoalesced transpose 
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Coalesced Transpose 

q  Matrix is partitioned into square tiles 
q  Threadblock (bx,by): 

" Read the (bx,by) input tile, store into SMEM 
" Write the SMEM data to (by,bx) output tile 

•  Transpose the indexing into SMEM 
q  Thread (tx,ty): 

" Reads element (tx,ty) from input tile 
" Writes element (tx,ty) into output tile 

q  Coalescing is achieved if: 
" Block/tile dimensions are multiples of 16 
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Coalesced Transpose 
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SMEM Optimization 

q  Threads read SMEM with stride = 16 
" Bank conflicts 

q  Solution 
" Allocate an extra column 
" Read stride = 17 
" Threads read from consecutive 

banks 
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Optimized transpose 

#define BLOCK_DIM 16 

__global__ void transpose(float *odata, float *idata, int width, int height, 
int pitch_in, int pitch_out){ 

 __shared__ float block[BLOCK_DIM][BLOCK_DIM+1]; 

 // read the matrix tile into shared memory 

 unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x; 

 unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y; 

 if((xIndex < width) && (yIndex < height)) { 

  unsigned int index_in = yIndex * pitch_in + xIndex; 

  block[threadIdx.y][threadIdx.x] = idata[index_in]; 

 } 

 __syncthreads(); 

 // write the transposed matrix tile to global memory 

 xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x; 

 yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y; 

 if((xIndex < height) && (yIndex < width)){ 

  unsigned int index_out = yIndex * pitch_out + xIndex; 

  odata[index_out] = block[threadIdx.x][threadIdx.y];   

 } 

} 
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A Common Programming Strategy 

q  Global memory resides in device memory (DRAM) - much 
slower access than shared memory 

q  So, a profitable way of performing computation on the device 
is to tile data to take advantage of fast shared memory: 
" Partition data into subsets that fit into shared memory 
" Handle each data subset with one thread block by: 

•  Loading the subset from global memory to shared 
memory, using multiple threads to exploit memory-
level parallelism 

•  Performing the computation on the subset from 
shared memory; each thread can efficiently multi-
pass over any data element 

•  Copying results from shared memory to global 
memory 
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A Common Programming Strategy (Cont.) 

q  Carefully divide data according to access patterns 
" R/W shared within Block à shared memory (very fast) 
" R/W within each thread à registers (very fast) 
" R/W inputs/results à global memory (very slow) 



Additional Issues 
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Occupancy Optimization 

q  Thread instructions are executed sequentially, so executing 
other warps is the only way to hide latencies and keep the 
hardware busy 

q  Occupancy = Number of warps running concurrently on a 
multiprocessor divided by maximum number of warps that 
can run concurrently 

q  Limited by resource usage: 
" Registers 
" Shared memory 
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Grid/Block Size Heuristics 

q  # of blocks > # of multiprocessors 
" So all multiprocessors have at least one block to execute 

q  # of blocks / # of multiprocessors > 2 
" Multiple blocks can run concurrently in a multiprocessor 
" Blocks that aren’t waiting at a __syncthreads() keep the 

hardware busy 
" Subject to resource availability – registers, shared memory 

q  # of blocks > 100 to scale to future devices 
" Blocks executed in pipeline fashion 
" 1000 blocks per grid will scale across multiple generations 



Daniele Loiacono 

Optimizing threads per block 
 

q  Choose threads per block as a multiple of warp size 
" Avoid wasting computation on under-populated warps 

q  More threads per block == better memory latency hiding 
q  But, more threads per block == fewer registers per thread 

" Kernel invocations can fail if too many registers are used 
q  Heuristics 

" Minimum: 64 threads per block 
•  Only if multiple concurrent blocks 

" 256 or 512 threads a better choice 
•  Usually still enough regs to compile and invoke successfully 

" This all depends on your computation, so experiment! 
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Parameterize Your Application 

q  Parameterization helps adaptation to different GPUs 
q  GPUs vary in many ways 

" # of multiprocessors 
" Memory bandwidth 
" Shared memory size 
" Register file size 
" Max. threads per block 

q  You can even make apps self-tuning  
" “Experiment” mode discovers and saves optimal 

configuration 
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Control Flow Instructions 

q  Main performance concern with branching is divergence 
" Threads within a single warp take different paths 
" Different execution paths must be serialized 

q  Avoid divergence when branch condition is a function of 
thread ID 
" Example with divergence: 

•  if (threadIdx.x > 2) { } 
•  Branch granularity < warp size 

" Example without divergence: 
•  if (threadIdx.x / WARP_SIZE > 2) { } 
•  Branch granularity is a whole multiple of warp size 
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GPU results may not match CPU 

q  Many variables: hardware, compiler, optimization settings 
q  Floating-point arithmetic is not associative! 

" In symbolic math, (x+y)+z == x+(y+z) but this is not 
necessarily true for floating-point addition 
• e.g., try with x = 10^30, y = -10^30 and z = 1 

" When you parallelize computations, you potentially change 
the order of operations 

" Parallel results may not exactly match sequential results 
(this problem is not specific to GPU or CUDA) 


