

References

□ This set of slides is mainly based on:

- CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory
- Slide of Applied Parallel Programming (ECE498@UIUC) http:// courses.engr.illinois.edu/ece498/al/

Useful references

- Programming Massively Parallel Processors: A Hands-on Approach, David B. Kirk and Wen-mei W. Hwu
- http://www.gpgpu.it/ (CUDA Tutorial)
- CUDA Programming Guide http://developer.nvidia.com/object/ gpucomputing.html
- CUDA C Best Practices Guide http://developer.download.nvidia.com/compute/cuda/3_2_prod/ toolkit/docs/CUDA_C_Best_Practices_Guide.pdf

Overview

Optimize Algorithms for the GPU

- Maximize independent parallelism
- □ Maximize arithmetic intensity (math/bandwidth)
- Sometimes it's better to recompute than to cache
 GPU spends its transistors on ALUs, not memory
- Do more computation on the GPU to avoid costly data transfers
 - Even low parallelism computations can sometimes be faster than transferring back and forth to host

Optimize Memory Access

□ Coalesced vs. Non-coalesced = order of magnitude

- Global/Local device memory
- Take advantages of shared memory
 - Hundreds of times faster than global memory
 - Threads can cooperate via shared memory
 - Use one / a few threads to load / compute data shared by all threads
 - Use it to avoid non-coalesced access: stage loads and stores in shared memory to re-order noncoalesceable addressing
- □ In shared memory, avoid high-degree bank conflicts

Use Parallelism Efficiently

- Partition your computation to keep the GPU multiprocessors equally busy
 - Many threads, many thread blocks
- Keep resource usage low enough to support multiple active thread blocks per multiprocessor
 - Registers, shared memory

Thread Scheduling/Execution

- Each Thread Blocks is divided in 32-thread Warps
 - This is an implementation decision, not part of the CUDA programming model
- □ Warps are scheduling units in SM
- If 3 blocks are assigned to an SM and each Block has 256 threads, how many Warps are there in an SM?
 - Each Block is divided into 256/32 = 8 Warps
 - There are 8 * 3 = 24 Warps
 - At any point in time, only one of the 24 Warps will be selected for instruction fetch and execution.

SM Warp Scheduling

- SM hardware implements zero-overhead Warp scheduling
 - Warps whose next instruction has its operands ready for consumption are eligible for execution
 - Eligible Warps are selected for execution on a prioritized scheduling policy
 - All threads in a Warp execute the same instruction when selected
- 4 clock cycles needed to dispatch the same instruction for all threads in a Warp in G8x/ G200
 - If one global memory access is needed for every 4 instructions
 - A minimal of 13 Warps are needed to fully tolerate 200-cycle memory latency

Memory Optimization

Overview

Optimizing host-device data transfers

- Coalescing global data accesses
- □ Using shared memory effectively

Host-Device Data Transfers

- Device memory to host memory bandwidth much lower than device memory to device bandwidth
 - 8GB/s peak (PCI-e x16 Gen 2) vs. 141 GB/s peak (GTX 280)
- Minimize transfers
 - Intermediate data structures can be allocated, operated on, and deallocated without ever copying them to host memory
- Group transfers
 - One large transfer much better than many small ones

Global Memory Usage

□ Why optimizing global memory usage?

- Global memory is not always cached (e.g., on G8x/GT200)
- Highest latency instructions: 400-600 clock cycles
- Likely to be a performance bottleneck
- Optimizations can greatly increase performance
- Optimizing the global memory usage means optimizing the access patterns of threads executed at the same time on GPU
- □ Which threads are executed *at the same time*?
 - Each block of thread is divided in 32-thread warps
 - ► Warps are groups of threads executed **physically in parallel** (SIMD)
 - The first or second half of warp are called half-warp
 - This is an implementation decision, not part of the CUDA programming model

Coalescing (compute capability 1.0 / 1.1)

- □ A coordinated read by a half-warp (16 threads)
- □ A contiguous region of global memory:
 - ▶ 64 bytes each thread reads a word: int, float, ...
 - 128 bytes each thread reads a double-word: int2, float2, ...
 - 256 bytes each thread reads a quad-word: int4, float4, ...
- Additional restrictions:
 - Starting address for a region must be a multiple of region size
 - The kth thread in a half-warp must access the kth element in a block being read
- □ Exception: not all threads must be participating
 - Predicated access, divergence within a halfwarp

Coalescence (1.0/1.1): examples

POLITECNICO DI MILANO

Coalescing (compute capability >= 1.2)

- A single memory transaction is issued for a half warp if words accessed by all threads lie in the same segment of size equal to:
 - 32 bytes if all threads access 8-bit words
 - ▶ 64 bytes if all threads access 16-bit words
 - 128 bytes if all threads access 32-bit or 64-bit words
- Achieved for any pattern of addresses requested by the halfwarp
 - including patterns where multiple threads access the same address
- □ If a half-warp addresses words in n different segments, n memory transactions are issued (one for each segment)

Daniele Loiacono

POLITECNICO DI MILANO

Coalescing: Timing Results

Experiment:

- Kernel: read a float, increment, write back
- ► 3M floats (12MB)
- Times averaged over 10K runs
- □ 12K blocks x 256 threads:
 - ▶ 356µs coalesced
 - ► 357µs coalesced, some threads don't participate
 - 3494µs permuted/misaligned thread access

Uncoalesced Access: float3 Case

□ float3 is 12 bytes

Each thread ends up executing 3 reads

- sizeof(float3) != 4, 8, or 16
- Half-warp reads three 64B non-contiguous regions

Uncoalesced float3 Code

```
__global__ void accessFloat3(float3 *d_in, float3 d_out)
{
    int index = blockIdx.x * blockDim.x + threadIdx.x;
    float3 a = d_in[index];
    a.x += 2;
    a.y += 3;
    a.z += 4;
    d_out[index] = a;
}
```

Shared Memory

□ ~Hundred times faster than global memory

□ Cache data to reduce global memory accesses

□ Threads can cooperate via shared memory

□ Use it to avoid non-coalesced access

Stage loads and stores in shared memory to re-order noncoalesceable addressing

Coalescing float3 Access

GMEM

Similarly, Step3 starting at offset 512

Daniele Loiacono

Coalesced Access: float3 Case

Use shared memory to allow coalescing

- Need sizeof(float3)*(threads/block) bytes of SMEM
- Each thread reads 3 scalar floats:
 - Offsets: 0, (threads/block), 2*(threads/block)
 - These will likely be processed by other threads, so sync
- Processing
 - Each thread retrieves its float3 from SMEM array
 - Cast the SMEM pointer to (float3*)
 - Use thread ID as index
 - Rest of the compute code does not change!

Coalesced float3 Code

Coalescing: Timing Results

Experiment:

- Kernel: read a float, increment, write back
- ► 3M floats (12MB)
- Times averaged over 10K runs
- □ 12K blocks x 256 threads reading floats:
 - ▶ 356µs coalesced
 - ▶ 357µs coalesced, some threads don't participate
 - 3494µs permuted/misaligned thread access
- □ 4K blocks x 256 threads reading float3s:
 - ▶ 3302µs float3 uncoalesced
 - 359µs float3 coalesced through shared memory

Parallel Memory Architecture

Many threads accessing memory

- Therefore, memory is divided into banks
- Essential to achieve high bandwidth

□ Each bank can service one address per cycle

- A memory can service as many simultaneous accesses as it has banks
- Multiple simultaneous accesses to a bank result in a bank conflict
 - Conflicting accesses are serialized

Bank Addressing Examples

- No bank conflicts
 - Left: linear addressing stride == 1
 - Right: random 1:1 permutation

POLITECNICO DI MILANO

Bank Addressing Examples

- □ Left: 2-way Bank Conflicts
 - Linear addressing stride == 2
- Right: 8-way Bank Conflicts
 - ► Linear addressing stride == 8

Shared memory bank conflicts

- Shared memory is as fast as registers if there are no bank conflicts
- □ The fast cases:
 - If all threads of a half-warp access different banks, there is no bank conflict
 - If all threads of a half-warp read the identical address, there is no bank conflict (broadcast)
- □ The slow cases:
 - Bank Conflict: multiple threads in the same half-warp access the same bank
 - Must serialize the accesses
 - Cost = max # of simultaneous accesses to a single bank

How addresses map to banks on G80/ GT200

- □ Bandwidth of each bank is 32 bit per 2 clock cycles
- □ Successive 32-bit words are assigned to successive banks
- □ G80/GT200 have 16 banks
 - ► So bank = address % 16
 - Same as the size of a half-warp
 - No bank conflicts between different half-warps, only within a single half-warp

Matrix Transpose Example

Each thread block transposes an equal sized block of matrix M

- Assume M is square (n x n)
- What is a good blocksize?
- CUDA places limitations on number of threads per block
 - ▶ 512 threads per block is the maximum allowed by CUDA

Matrix transpose example

{

}

}

_global___ void transpose_naive(float *odata, float* idata, int width, int height, int pitch_in, int pitch_out)

```
unsigned int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
```

```
if (xIndex < width && yIndex < height)
{
    unsigned int index_in = xIndex + pitch_in * yIndex;
    unsigned int index_out = yIndex + pitch_out * xIndex;
    odata[index out] = idata[index in];</pre>
```

Uncoalesced transpose

Reads inputs from GMEM

Writes outputs to GMEM

Coalesced Transpose

- Matrix is partitioned into square tiles
- Threadblock (bx,by):
 - Read the (bx,by) input tile, store into SMEM
 - Write the SMEM data to (by,bx) output tile
 - Transpose the indexing into SMEM
- □ Thread (tx,ty):
 - Reads element (tx,ty) from input tile
 - Writes element (tx,ty) into output tile
- □ Coalescing is achieved if:
 - Block/tile dimensions are multiples of 16

Coalesced Transpose

Reads from GMEM

Writes to SMEM

Reads from SMEM

15,2

15,15

15.0

15,1

Writes to GMEM

POLITECNICO DI MILANO

Daniele Loiacono

SMEM Optimization

Reads from SMEM

Threads read SMEM with stride = 16 Bank conflicts

Reads from SMEM

Solution

- Allocate an extra column
- ▶ Read stride = 17
- Threads read from consecutive banks

Optimized transpose

```
#define BLOCK DIM 16
 global void transpose(float *odata, float *idata, int width, int height,
   int pitch in, int pitch out) {
   shared float block[BLOCK DIM][BLOCK DIM+1];
   // read the matrix tile into shared memory
   unsigned int xIndex = blockIdx.x * BLOCK DIM + threadIdx.x;
   unsigned int yIndex = blockIdx.y * BLOCK DIM + threadIdx.y;
   if((xIndex < width) && (yIndex < height)) {
       unsigned int index in = yIndex * pitch in + xIndex;
       block[threadIdx.y][threadIdx.x] = idata[index in];
    syncthreads();
   // write the transposed matrix tile to global memory
   xIndex = blockIdx.y * BLOCK DIM + threadIdx.x;
   yIndex = blockIdx.x * BLOCK DIM + threadIdx.y;
   if((xIndex < height) && (yIndex < width)){
       unsigned int index out = yIndex * pitch out + xIndex;
       odata[index out] = block[threadIdx.x][threadIdx.y];
```

A Common Programming Strategy

- Global memory resides in device memory (DRAM) much slower access than shared memory
- So, a profitable way of performing computation on the device is to tile data to take advantage of fast shared memory:
 - Partition data into subsets that fit into shared memory
 - Handle each data subset with one thread block by:
 - Loading the subset from global memory to shared memory, using multiple threads to exploit memorylevel parallelism
 - Performing the computation on the subset from shared memory; each thread can efficiently multipass over any data element
 - Copying results from shared memory to global memory

A Common Programming Strategy (Cont.)

- Carefully divide data according to access patterns
 - ▶ R/W shared within Block \rightarrow shared memory (very fast)
 - ▶ R/W within each thread \rightarrow registers (very fast)
 - ▶ R/W inputs/results \rightarrow global memory (very slow)

Additional Issues

Occupancy Optimization

- Thread instructions are executed sequentially, so executing other warps is the only way to hide latencies and keep the hardware busy
- Occupancy = Number of warps running concurrently on a multiprocessor divided by maximum number of warps that can run concurrently
- □ Limited by resource usage:
 - Registers
 - Shared memory

Grid/Block Size Heuristics

- □ # of blocks > # of multiprocessors
 - So all multiprocessors have at least one block to execute
- \Box # of blocks / # of multiprocessors > 2
 - Multiple blocks can run concurrently in a multiprocessor
 - Blocks that aren't waiting at a _____syncthreads() keep the hardware busy
 - Subject to resource availability registers, shared memory
- \Box # of blocks > 100 to scale to future devices
 - Blocks executed in pipeline fashion
 - 1000 blocks per grid will scale across multiple generations

Optimizing threads per block

Choose threads per block as a multiple of warp size

- Avoid wasting computation on under-populated warps
 More threads per block == better memory latency hiding
 But, more threads per block == fewer registers per thread
 - Kernel invocations can fail if too many registers are used
- Heuristics
 - Minimum: 64 threads per block
 - Only if multiple concurrent blocks
 - ▶ 256 or 512 threads a better choice
 - Usually still enough regs to compile and invoke successfully
 - This all depends on your computation, so experiment!

Parameterize Your Application

Parameterization helps adaptation to different GPUs

- GPUs vary in many ways
 - # of multiprocessors
 - Memory bandwidth
 - Shared memory size
 - Register file size
 - Max. threads per block
- You can even make apps self-tuning
 - "Experiment" mode discovers and saves optimal configuration

Control Flow Instructions

□ Main performance concern with branching is **divergence**

- Threads within a single warp take different paths
- Different execution paths must be serialized
- Avoid divergence when branch condition is a function of thread ID
 - Example with divergence:
 - if (threadIdx.x > 2) { }
 - Branch granularity < warp size
 - Example without divergence:
 - if (threadIdx.x / WARP_SIZE > 2) { }
 - Branch granularity is a whole multiple of warp size

GPU results may not match CPU

Many variables: hardware, compiler, optimization settings
 Floating-point arithmetic is not associative!

In symbolic math, (x+y)+z == x+(y+z) but this is not necessarily true for floating-point addition

• e.g., try with $x = 10^{30}$, $y = -10^{30}$ and z = 1

- When you parallelize computations, you potentially change the order of operations
- Parallel results may not exactly match sequential results (this problem is not specific to GPU or CUDA)