
Daniele Loiacono

Performance optimization with CUDA
Algoritmi e Calcolo Parallelo

Daniele Loiacono

References

q  This set of slides is mainly based on:
" CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest

National Laboratory
" Slide of Applied Parallel Programming (ECE498@UIUC) http://

courses.engr.illinois.edu/ece498/al/
q  Useful references

" Programming Massively Parallel Processors: A Hands-on
Approach, David B. Kirk and Wen-mei W. Hwu

" http://www.gpgpu.it/ (CUDA Tutorial)
" CUDA Programming Guide http://developer.nvidia.com/object/

gpucomputing.html
" CUDA C Best Practices Guide

http://developer.download.nvidia.com/compute/cuda/3_2_prod/
toolkit/docs/CUDA_C_Best_Practices_Guide.pdf

Overview

Daniele Loiacono

Optimize Algorithms for the GPU

q  Maximize independent parallelism

q  Maximize arithmetic intensity (math/bandwidth)

q  Sometimes it’s better to recompute than to cache
" GPU spends its transistors on ALUs, not memory

q  Do more computation on the GPU to avoid costly data
transfers
" Even low parallelism computations can sometimes be

faster than transferring back and forth to host

Daniele Loiacono

Optimize Memory Access

q  Coalesced vs. Non-coalesced = order of magnitude
" Global/Local device memory

q  Take advantages of shared memory
" Hundreds of times faster than global memory
" Threads can cooperate via shared memory
" Use one / a few threads to load / compute data shared by

all threads
" Use it to avoid non-coalesced access: stage loads and

stores in shared memory to re-order noncoalesceable
addressing

q  In shared memory, avoid high-degree bank conflicts

Daniele Loiacono

Use Parallelism Efficiently

q  Partition your computation to keep the GPU multiprocessors
equally busy
" Many threads, many thread blocks

q  Keep resource usage low enough to support multiple active
thread blocks per multiprocessor
" Registers, shared memory

Daniele Loiacono

Thread Scheduling/Execution

q  Each Thread Blocks is divided in 32-thread
Warps
" This is an implementation decision, not

part of the CUDA programming model
q  Warps are scheduling units in SM
q  If 3 blocks are assigned to an SM and each

Block has 256 threads, how many Warps
are there in an SM?
" Each Block is divided into 256/32 = 8

Warps
" There are 8 * 3 = 24 Warps
" At any point in time, only one of the 24

Warps will be selected for instruction
fetch and execution.

…

t0 t1 t2 … t31

…

…

t0 t1 t2 … t31

… Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

Daniele Loiacono

SM Warp Scheduling

q  SM hardware implements zero-overhead Warp
scheduling
" Warps whose next instruction has its

operands ready for consumption are eligible
for execution

" Eligible Warps are selected for execution on
a prioritized scheduling policy

" All threads in a Warp execute the same
instruction when selected

q  4 clock cycles needed to dispatch the same
instruction for all threads in a Warp in G8x/
G200
" If one global memory access is needed for

every 4 instructions
" A minimal of 13 Warps are needed to fully

tolerate 200-cycle memory latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

time

warp 3 instruction 96

Memory Optimization

Daniele Loiacono

Overview

q  Optimizing host-device data transfers
q  Coalescing global data accesses
q  Using shared memory effectively

Daniele Loiacono

Host-Device Data Transfers

q  Device memory to host memory bandwidth much lower than
device memory to device bandwidth
" 8GB/s peak (PCI-e x16 Gen 2) vs. 141 GB/s peak (GTX

280)
q  Minimize transfers

" Intermediate data structures can be allocated, operated
on, and deallocated without ever copying them to host
memory

q  Group transfers
" One large transfer much better than many small ones

Daniele Loiacono

Global Memory Usage

q  Why optimizing global memory usage?
" Global memory is not always cached (e.g., on G8x/GT200)
" Highest latency instructions: 400-600 clock cycles
" Likely to be a performance bottleneck
" Optimizations can greatly increase performance

q  Optimizing the global memory usage means optimizing the
access patterns of threads executed at the same time on GPU

q  Which threads are executed at the same time?
" Each block of thread is divided in 32-thread warps
" Warps are groups of threads executed physically in parallel (SIMD)
" The first or second half of warp are called half-warp
" This is an implementation decision, not part of the CUDA

programming model

Daniele Loiacono

Coalescing (compute capability 1.0 / 1.1)

q  A coordinated read by a half-warp (16 threads)
q  A contiguous region of global memory:

" 64 bytes - each thread reads a word: int, float, …
" 128 bytes - each thread reads a double-word: int2, float2,

…
" 256 bytes – each thread reads a quad-word: int4, float4, …

q  Additional restrictions:
" Starting address for a region must be a multiple of region

size
" The kth thread in a half-warp must access the kth element

in a block being read
q  Exception: not all threads must be participating

" Predicated access, divergence within a halfwarp

Daniele Loiacono

Coalescence (1.0/1.1): examples

Daniele Loiacono

Coalescing (compute capability >= 1.2)

q  A single memory transaction is issued for a half warp if words
accessed by all threads lie in the same segment of size equal
to:
" 32 bytes if all threads access 8-bit words
" 64 bytes if all threads access 16-bit words
" 128 bytes if all threads access 32-bit or 64-bit words

q  Achieved for any pattern of addresses requested by the half-
warp
" including patterns where multiple threads access the same address

q  If a half-warp addresses words in n different segments, n
memory transactions are issued (one for each segment)

Daniele Loiacono

Coalescence (1.2): examples

Daniele Loiacono

Coalescing: Timing Results

q  Experiment:
" Kernel: read a float, increment, write back
" 3M floats (12MB)
" Times averaged over 10K runs

q  12K blocks x 256 threads:
" 356µs – coalesced
" 357µs – coalesced, some threads don’t participate
" 3494µs – permuted/misaligned thread access

Daniele Loiacono

Uncoalesced Access: float3 Case

q  float3 is 12 bytes
q  Each thread ends up executing 3 reads

" sizeof(float3) != 4, 8, or 16
" Half-warp reads three 64B non-contiguous regions

Daniele Loiacono

Uncoalesced float3 Code

__global__ void accessFloat3(float3 *d_in, float3 d_out)

{
 int index = blockIdx.x * blockDim.x + threadIdx.x;

 float3 a = d_in[index];

 a.x += 2;

 a.y += 3;

 a.z += 4;
 d_out[index] = a;

}

Daniele Loiacono

Shared Memory

q  ~Hundred times faster than global memory

q  Cache data to reduce global memory accesses

q  Threads can cooperate via shared memory

q  Use it to avoid non-coalesced access
" Stage loads and stores in shared memory to re-order

noncoalesceable addressing

Daniele Loiacono

Coalescing float3 Access

Daniele Loiacono

Coalesced Access: float3 Case

q  Use shared memory to allow coalescing
" Need sizeof(float3)*(threads/block) bytes of SMEM
" Each thread reads 3 scalar floats:

•  Offsets: 0, (threads/block), 2*(threads/block)
•  These will likely be processed by other threads, so sync

q  Processing
" Each thread retrieves its float3 from SMEM array

•  Cast the SMEM pointer to (float3*)
•  Use thread ID as index

" Rest of the compute code does not change!

Daniele Loiacono

Coalesced float3 Code
__global__ void accessInt3Shared(float *g_in,

float *g_out)

{

 int dim = blockDim.x;

 int index = 3 * blockIdx.x * dim +
threadIdx.x;

 __shared__ float s_data[dim*3];

 s_data[threadIdx.x] = g_in[index];

 s_data[threadIdx.x+dim] = g_in[index+dim];

 s_data[threadIdx.x+2*dim]= g_in[index+dim*2];

 __syncthreads();

 float3 a = ((float3*)s_data)[threadIdx.x];

 a.x += 2;

 a.y += 3;

 a.z += 4;

 ((float3*)s_data)[threadIdx.x] = a;

 __syncthreads();

 g_out[index] = s_data[threadIdx.x];

 g_out[index+dim] = s_data[threadIdx.x+dim];

 g_out[index+dim*2] = s_data[threadIdx.x+dim*2];

}

Read the
input
through
SMEM

Compute
code
Is not
changed

Write the
result
through
SMEM

{

{

{

23

Daniele Loiacono

Coalescing: Timing Results

q  Experiment:
" Kernel: read a float, increment, write back
" 3M floats (12MB)
" Times averaged over 10K runs

q  12K blocks x 256 threads reading floats:
" 356µs – coalesced
" 357µs – coalesced, some threads don’t participate
" 3494µs – permuted/misaligned thread access

q  4K blocks x 256 threads reading float3s:
" 3302µs – float3 uncoalesced
" 359µs – float3 coalesced through shared memory

Daniele Loiacono

Parallel Memory Architecture

q  Many threads accessing memory
" Therefore, memory is divided into banks
" Essential to achieve high bandwidth

q  Each bank can service one address per cycle
" A memory can service as many simultaneous accesses as it

has banks

q  Multiple simultaneous accesses to a bank result in a bank
conflict
" Conflicting accesses are serialized

Daniele Loiacono

Bank Addressing Examples

• No bank conflicts
• Left: linear addressing

stride == 1
• Right: random 1:1

permutation

Daniele Loiacono

Bank Addressing Examples

q  Left: 2-way Bank Conflicts
" Linear addressing stride == 2

q  Right: 8-way Bank Conflicts
" Linear addressing stride == 8

Daniele Loiacono

Shared memory bank conflicts

q  Shared memory is as fast as registers if there are no bank
conflicts

q  The fast cases:
" If all threads of a half-warp access different banks, there is

no bank conflict
" If all threads of a half-warp read the identical address,

there is no bank conflict (broadcast)
q  The slow cases:

" Bank Conflict: multiple threads in the same half-warp
access the same bank

" Must serialize the accesses
" Cost = max # of simultaneous accesses to a single bank

Daniele Loiacono

How addresses map to banks on G80/
GT200

q  Bandwidth of each bank is 32 bit per 2 clock cycles
q  Successive 32-bit words are assigned to successive banks
q  G80/GT200 have 16 banks

" So bank = address % 16
" Same as the size of a half-warp
" No bank conflicts between different half-warps, only within

a single half-warp

Daniele Loiacono

Matrix Transpose Example

q  Each thread block transposes an equal sized block of matrix M
q  Assume M is square (n x n)
q  What is a good blocksize?
q  CUDA places limitations on number of threads per block

" 512 threads per block is the maximum allowed by CUDA

31

Daniele Loiacono

Matrix transpose example

__global__ void transpose_naive(float *odata, float* idata, int
width, int height, int pitch_in, int pitch_out)

{
 unsigned int xIndex = blockDim.x * blockIdx.x + threadIdx.x;

 unsigned int yIndex = blockDim.y * blockIdx.y + threadIdx.y;

 if (xIndex < width && yIndex < height)

 {
 unsigned int index_in = xIndex + pitch_in * yIndex;

 unsigned int index_out = yIndex + pitch_out * xIndex;

 odata[index_out] = idata[index_in];

 }

}

Daniele Loiacono

Uncoalesced transpose

0,0 0,1 0,2

1,0 1,1 1,2

0,15

1,15

15,0 15,1 15,2 15,15

…
…

…

…

0,0 1,0 2,0

0,1 1,1 2,1

15,0

15,1

0,15 1,15 2,15 15,15

…

…

…

…

Reads inputs from GMEM Writes outputs to GMEM

…
Stride = 1, coalesced

GMEM …
Stride = M, uncoalesced

GMEM

Daniele Loiacono

Coalesced Transpose

q  Matrix is partitioned into square tiles
q  Threadblock (bx,by):

" Read the (bx,by) input tile, store into SMEM
" Write the SMEM data to (by,bx) output tile

•  Transpose the indexing into SMEM
q  Thread (tx,ty):

" Reads element (tx,ty) from input tile
" Writes element (tx,ty) into output tile

q  Coalescing is achieved if:
" Block/tile dimensions are multiples of 16

Daniele Loiacono

Coalesced Transpose

0,0 0,1 0,2

1,0 1,1 1,2

0,15

1,15

15,0 15,1 15,2 15,15

…
…

…
…

Reads from GMEM Writes to SMEM

0,0 0,1 0,2

1,0 1,1 1,2

0,15

1,15

15,0 15,1 15,2 15,15

…

…

…

…

0,0 1,0 2,0

0,1 1,1 2,1

15,0

15,1

0,15 1,15 2,15 15,15

…

…

…

…

0,0 0,1 0,2

1,0 1,1 1,2

0,15

1,15

15,0 15,1 15,2 15,15

…

…

…

…

Reads from SMEM Writes to GMEM

Daniele Loiacono

SMEM Optimization

q  Threads read SMEM with stride = 16
" Bank conflicts

q  Solution
" Allocate an extra column
" Read stride = 17
" Threads read from consecutive

banks

0,0 0,1 0,2

1,0 1,1 1,2

0,15

1,15

15,0 15,1 15,2 15,15

…
…

…

…

Reads from SMEM

0,0 0,1 0,2

1,0 1,1 1,2

0,15

1,15

15,0 15,1 15,2 15,15

…

…

…

…

Reads from SMEM

Daniele Loiacono

Optimized transpose

#define BLOCK_DIM 16

__global__ void transpose(float *odata, float *idata, int width, int height,
int pitch_in, int pitch_out){

 __shared__ float block[BLOCK_DIM][BLOCK_DIM+1];

 // read the matrix tile into shared memory

 unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;

 unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;

 if((xIndex < width) && (yIndex < height)) {

 unsigned int index_in = yIndex * pitch_in + xIndex;

 block[threadIdx.y][threadIdx.x] = idata[index_in];

 }

 __syncthreads();

 // write the transposed matrix tile to global memory

 xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;

 yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;

 if((xIndex < height) && (yIndex < width)){

 unsigned int index_out = yIndex * pitch_out + xIndex;

 odata[index_out] = block[threadIdx.x][threadIdx.y];

 }

}

Daniele Loiacono

A Common Programming Strategy

q  Global memory resides in device memory (DRAM) - much
slower access than shared memory

q  So, a profitable way of performing computation on the device
is to tile data to take advantage of fast shared memory:
" Partition data into subsets that fit into shared memory
" Handle each data subset with one thread block by:

•  Loading the subset from global memory to shared
memory, using multiple threads to exploit memory-
level parallelism

•  Performing the computation on the subset from
shared memory; each thread can efficiently multi-
pass over any data element

•  Copying results from shared memory to global
memory

Daniele Loiacono

A Common Programming Strategy (Cont.)

q  Carefully divide data according to access patterns
" R/W shared within Block à shared memory (very fast)
" R/W within each thread à registers (very fast)
" R/W inputs/results à global memory (very slow)

Additional Issues

Daniele Loiacono

Occupancy Optimization

q  Thread instructions are executed sequentially, so executing
other warps is the only way to hide latencies and keep the
hardware busy

q  Occupancy = Number of warps running concurrently on a
multiprocessor divided by maximum number of warps that
can run concurrently

q  Limited by resource usage:
" Registers
" Shared memory

Daniele Loiacono

Grid/Block Size Heuristics

q  # of blocks > # of multiprocessors
" So all multiprocessors have at least one block to execute

q  # of blocks / # of multiprocessors > 2
" Multiple blocks can run concurrently in a multiprocessor
" Blocks that aren’t waiting at a __syncthreads() keep the

hardware busy
" Subject to resource availability – registers, shared memory

q  # of blocks > 100 to scale to future devices
" Blocks executed in pipeline fashion
" 1000 blocks per grid will scale across multiple generations

Daniele Loiacono

Optimizing threads per block

q  Choose threads per block as a multiple of warp size
" Avoid wasting computation on under-populated warps

q  More threads per block == better memory latency hiding
q  But, more threads per block == fewer registers per thread

" Kernel invocations can fail if too many registers are used
q  Heuristics

" Minimum: 64 threads per block
•  Only if multiple concurrent blocks

" 256 or 512 threads a better choice
•  Usually still enough regs to compile and invoke successfully

" This all depends on your computation, so experiment!

Daniele Loiacono

Parameterize Your Application

q  Parameterization helps adaptation to different GPUs
q  GPUs vary in many ways

" # of multiprocessors
" Memory bandwidth
" Shared memory size
" Register file size
" Max. threads per block

q  You can even make apps self-tuning
" “Experiment” mode discovers and saves optimal

configuration

Daniele Loiacono

Control Flow Instructions

q  Main performance concern with branching is divergence
" Threads within a single warp take different paths
" Different execution paths must be serialized

q  Avoid divergence when branch condition is a function of
thread ID
" Example with divergence:

•  if (threadIdx.x > 2) { }
•  Branch granularity < warp size

" Example without divergence:
•  if (threadIdx.x / WARP_SIZE > 2) { }
•  Branch granularity is a whole multiple of warp size

Daniele Loiacono

GPU results may not match CPU

q  Many variables: hardware, compiler, optimization settings
q  Floating-point arithmetic is not associative!

" In symbolic math, (x+y)+z == x+(y+z) but this is not
necessarily true for floating-point addition
• e.g., try with x = 10^30, y = -10^30 and z = 1

" When you parallelize computations, you potentially change
the order of operations

" Parallel results may not exactly match sequential results
(this problem is not specific to GPU or CUDA)

