
Daniele Loiacono

Thread Posix
Algoritmi e Calcolo Parallelo

Daniele Loiacono

References

 The material in this set of slide is taken from tutorials by Blaise
Barney from the Lawrence Livermore National Laboratory and from
slides of prof. Lanzi (Informatica B, A.A. 2009/2010)

 POSIX Threads Programming
Blaise Barney, Lawrence Livermore National Laboratory
https://computing.llnl.gov/tutorials/pthreads/

 Advanced Linux Programming

http://www.advancedlinuxprogramming.com/

2

Daniele Loiacono

What is a Thread?

 Technically, a thread is defined as an independent stream of
instructions that can be scheduled to run as such by the
operating system.

 To the software developer, the concept of a "procedure" that
runs independently from its main program may best describe
a thread.

 To go one step further, imagine a main program (a.out) that
contains a number of procedures. Then imagine all of these
procedures being able to be scheduled to run simultaneously
and/or independently by the operating system. That would
describe a "multi-threaded" program.

3

Daniele Loiacono

Unix Processes

 Before understanding a thread, one first needs to understand
a UNIX process

 A process is created by the operating system

 Processes contain information about program resources and
program execution state, including: Process ID, process
group ID, user ID, and group ID, Environment, Working
directory, Program instructions, etc.

4

Daniele Loiacono

Unix Processes vs Threads 5

Daniele Loiacono

Threads

 Threads exists within a process and uses the process resources

 Run as independent entities that duplicate only the bare essential
resources that enable them to exist as executable code

 May share the process resources with other threads that act equally
independently (and dependently)

 Dies if the parent process dies - or something similar

 Because threads within the same process share resources

Changes made by one thread to shared system resources (such
as closing a file) will be seen by all other threads

Two pointers having the same value point to the same data.

Reading and writing to the same memory locations is possible,
and therefore requires explicit synchronization by the
programmer.

6

Daniele Loiacono

What are Pthreads?

 Historically, hardware vendors have implemented their own
proprietary versions of threads. These implementations
differed substantially from each other making it difficult for
programmers to develop portable threaded applications.

 To take full advantage of the capabilities provided by
threads, a standardized programming interface was required.

 The POSIX standard has continued to evolve and undergo
revisions, including the Pthreads specification. The latest
version is known as IEEE Std 1003.1, 2004 Edition.

 Set of C language programming types and procedure calls

pthread.h header/include file

thread library

7

Daniele Loiacono

Designing Threaded Programs

 On modern, multi-cpu machines, pthreads are ideally suited for parallel

programming, and whatever applies to parallel programming in general,
applies to parallel pthreads programs.

 There are many considerations for designing parallel programs, such as:

What type of parallel programming model to use?

Problem partitioning

Load balancing

Communications

Data dependencies

…

 In general though, in order for a program
to take advantage of Pthreads, it must be

able to be organized into discrete,
independent tasks which can execute

concurrently.

 For example, if routine1 and routine2 can be interchanged, interleaved

and/or overlapped in real time, they are candidates for threading.

8

Daniele Loiacono

Models for Threaded Programs

 Manager/worker: a single thread, the manager assigns work to
other threads, the workers. Typically, the manager handles all input
and parcels out work to the other tasks. At least two forms of the
manager/worker model are common: static worker pool and
dynamic worker pool.

 Pipeline: a task is broken into a series of suboperations, each of
which is handled in series, but concurrently, by a different thread.
An automobile assembly line best describes this model.

 Peer: similar to the manager/worker model, but after the main
thread creates other threads, it participates in the work.

9

Daniele Loiacono

Shared Memory Model 10

 All threads have access to the same global, shared memory

 Threads also have their own private data

 Programmers are responsible
for synchronizing access
globally shared data.

Daniele Loiacono

Thread Safeness 11

Daniele Loiacono

The Pthreads API

 Thread management: routines that work directly on threads -
creating, detaching, joining, etc. Functions to set/query thread
attributes.

 Mutexes: routines that deal with synchronization, called a "mutex",
which is an abbreviation for "mutual exclusion". Mutex functions
provide for creating, destroying, locking and unlocking mutexes.
These are supplemented by mutex attribute functions that set or
modify attributes associated with mutexes.

 Condition variables: routines that address communications between
threads that share a mutex. Based upon programmer specified
conditions. This group includes functions to create, destroy, wait
and signal based upon specified variable values. Functions to
set/query condition variable attributes are also included.

 Synchronization: routines that manage read/write locks and
barriers.

12

Daniele Loiacono

Thread Management:
Creation

 Initially, your main() program comprises a single, default thread. All other

threads must be explicitly created by the programmer.

 pthread_create creates a new thread and makes it executable. This routine

can be called any number of times from anywhere within your code.

 pthread_create(thread, attr, start_routing, arg)

thread: unique identifier for the new thread returned by the subroutine.

attr: Aused to set thread attributes. You can specify a thread attributes
object, or NULL for the default values.

start_routine: the C routine that the thread

will execute once it is created.

arg: argument passed to start_routine. It must be passed by reference

as a pointer cast of type void. NULL may be used if no argument is to be

passed.

13

Daniele Loiacono

Thread Management:
Creation

 Once created, threads are peers, and may create other
threads. There is no implied hierarchy or dependency
between threads.

 The maximum number of threads that may be created by a
process is implementation dependent.

14

Daniele Loiacono

Thread Management:
Termination

 There are several ways in which a Pthread may be terminated:

The thread returns from its starting routine (the main routine
for the initial thread)

The thread makes a call to the pthread_exit subroutine

The thread is canceled by another thread via the pthread_cancel
routine (not covered here).

The entire process is terminated due to a call to either the exec
or exit subroutines.

 pthread_exit is used to explicitly exit a thread.

 Typically, the pthread_exit() routine is called after a thread has
completed its work and is no longer required to exist.

15

Daniele Loiacono

Thread Management:
Termination

 pthread_exit is used to explicitly exit a thread. Typically, the
pthread_exit() routine is called after a thread has completed
its work and is no longer required to exist.

 If main() finishes before the threads it has created, and exits
with pthread_exit(), the other threads will continue to
execute. Otherwise, they will be automatically terminated
when main() finishes.

 The programmer may optionally specify a termination status,
which is stored as a void pointer for any thread that may join
the calling thread.

 Cleanup: the pthread_exit() routine does not close files; any
files opened inside the thread will remain open after the
thread is terminated.

16

Daniele Loiacono

Example

#include <pthread.h>

#include <cstdlib>

#include <iostream>

#define NUM_THREADS 5

using namespace std;

void *PrintHello(void *threadid);

int main (int argc, char *argv[])

{

pthread_t threads[NUM_THREADS];

int rc;

for(long t=0; t<NUM_THREADS; t++){

cout << "In main: creating thread" << t << endl;

rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);

if (rc){

cout << "ERROR; return code from pthread_create() is";

cout << rc << endl;

exit(-1); }

}

pthread_exit(NULL);

}

17

Daniele Loiacono

Example

void *PrintHello(void *threadid)

{

long tid;

tid = (long)threadid;

cout << "Hello World! It's me, thread" << tid << endl;

pthread_exit(NULL);

}

18

Daniele Loiacono

Example: Output of Two Runs

In main: creating thread 0

Hello World! It's me, thread #0!

In main: creating thread 1

Hello World! It's me, thread #1!

In main: creating thread 2

Hello World! It's me, thread #2!

In main: creating thread 3

In main: creating thread 4

Hello World! It's me, thread #3!

Hello World! It's me, thread #4!

In main: creating thread 0

Hello World! It's me, thread #0!

In main: creating thread 1

In main: creating thread 2

Hello World! It's me, thread #1!

Hello World! It's me, thread #2!

In main: creating thread 3

In main: creating thread 4

Hello World! It's me, thread #3!

Hello World! It's me, thread #4!

19

Daniele Loiacono

Passing Arguments to Threads

 pthread_create() permits the programmer to pass one
argument to the thread start routine

 When multiple arguments must be passed, a structure which
contains all of the arguments must be used

20

Daniele Loiacono

Example: Passing One Argument

struct thread_data{

int thread_id;

int sum;

};

void *PrintHello(void *threadarg);

int main (int argc, char *argv[])

{

...

struct thread_data data[NUM_THREADS];

...

thread_data_array[t].thread_id = t;

thread_data_array[t].sum = sum;

rc = pthread_create(&threads[t], NULL, PrintHello,

(void *) &data[t]);

...

}

22

Daniele Loiacono

Example: Passing One Argument

void *PrintHello(void *arg)

{

struct thread_data *mydata;

mydata = (struct thread_data*) arg;

cout << "Hello World! It's me, thread " << mydata->thread_id

<< " sum is " << mydata->sum << endl;

pthread_exit(NULL);

}

23

Daniele Loiacono

Joining Threads 24

 "Joining" is one way to accomplish synchronization between threads.

 The pthread_join() subroutine blocks the calling thread until the specified

thread terminates.

 The programmer is able to obtain the target thread's termination return
status if it was specified in the target thread's call to pthread_exit().

 A joining thread can match one pthread_join() call. It is a logical error to

attempt multiple joins on the same thread.

Daniele Loiacono

Joinable or Not? Detaching?

 When a thread is created, one of its attributes defines whether it is joinable

or detached.

 Only threads that are created as joinable can be joined. If a thread is

created as detached, it can never be joined.

 To explicitly create a thread as joinable or detached, the attr argument in

the pthread_create() routine is used. The typical 4 step process is:

Declare a pthread attribute variable of the pthread_attr_t data type

Initialize the attribute variable with pthread_attr_init()

Set the attribute detached status with pthread_attr_setdetachstate()

When done, free library resources used by the attribute with
pthread_attr_destroy()

25

Daniele Loiacono

Detaching and Recommendations

 Detaching

pthread_detach() can be used to explicitly detach a
thread even though it was created as joinable. There is no
converse routine

 Recommendations

If a thread requires joining, consider explicitly creating it
as joinable.

This provides portability as not all implementations may
create threads as joinable by default.

If you know in advance that a thread will never need to
join with another thread, consider creating it in a
detached state.

Some system resources may be able to be freed.

26

Daniele Loiacono

Example of Joining Threads:
Initialization

...

#define NUM_THREADS 4

void *BusyWork(void *t);

int main (int argc, char *argv[])

{

pthread_t thread[NUM_THREADS];

pthread_attr_t attr;

int rc;

long t;

void *status;

/* Initialize and set thread detached attribute */

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

27

Daniele Loiacono

Example of Joining Threads:
Creation

for(t=0; t<NUM_THREADS; t++) {

cout << "Main: creating thread “ << t << endl;

rc = pthread_create(&thread[t], &attr, BusyWork, (void *)t);

if (rc) {

cout << "ERROR; return code from pthread_create()

is ” << rc << endl;

exit(-1);

}

}

28

Daniele Loiacono

Example of Joining Threads:
Joining

/* Free attribute and wait for the other threads */

pthread_attr_destroy(&attr);

for(t=0; t<NUM_THREADS; t++) {

rc = pthread_join(thread[t], &status);

if (rc) {

cout << “ERROR; return code from pthread_join()

is “ << rc << endl;

exit(-1);

}

cout << "Main: completed join with thread “ << t << “having a

status of << (long)status << endl;

}

cout << "Main: program completed. Exiting” << endl;

pthread_exit(NULL);

}

29

Daniele Loiacono

Mutex Variables

 Mutex is an abbreviation for "mutual exclusion".

 Mutex variables are one of the primary means of implementing thread
synchronization and for protecting shared data when multiple writes occur.

 Example: two tasks have access to the same bank account. When one task
gains access, other tasks cannot access it.

 A mutex variable acts like a "lock" protecting access to a shared data
resource.

 In Pthreads, one thread can lock (or own) a mutex variable at any given
time.

 If several threads try to lock a mutex only one thread will be successful.

 No other thread can own that mutex until the owning thread unlocks that

mutex. Threads must "take turns" accessing protected data.

30

Daniele Loiacono

Mutex Variables

 Very often the action performed by a thread owning a mutex is the updating

of global variables.

 This is a safe way to ensure that when several threads update the same

variable, the final value is the same as what it would be if only one thread
performed the update.

 The variables being updated belong to a "critical section".

 A typical sequence in the use of a mutex is as follows:

Create and initialize a mutex variable

Several threads attempt to lock the mutex

Only one succeeds and that thread owns the mutex

The owner thread performs some set of actions

The owner unlocks the mutex

Another thread acquires the mutex and repeats the process

Finally the mutex is destroyed

31

Daniele Loiacono

Creating and Destroying Mutexes

 Functions
pthread_mutex_init (mutex,attr)

pthread_mutex_destroy (mutex)

pthread_mutexattr_init (attr)

pthread_mutexattr_destroy (attr)

 Usage
Mutex variables must be declared with type pthread_mutex_t, and must

be initialized (statically or dinamically) before they can be used.

pthread_mutex_t mymutex = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_init()

The attr object is used to establish properties for the mutex object, and
must be of type pthread_mutexattr_t if used (may be specified as NULL

to accept defaults).

32

Daniele Loiacono

Creating and Destroying Mutexes

 The pthread_mutexattr_init() and
pthread_mutexattr_destroy() routines are used to create and
destroy mutex attribute objects respectively.

 pthread_mutex_destroy() should be used to free a mutex
object which is no longer needed.

33

Daniele Loiacono

Locking and Unlocking Mutexes

 Functions
pthread_mutex_lock (mutex)

pthread_mutex_trylock (mutex)

pthread_mutex_unlock (mutex)

 Usage
pthread_mutex_lock() is used by a thread to acquire a lock on the
specified mutex variable. If the mutex is already locked by another

thread, this call will block the calling thread until the mutex is unlocked.

pthread_mutex_trylock() will attempt to lock a mutex. However, if the

mutex is already locked, the routine will return immediately with a

"busy" error code. This routine may be useful in preventing deadlock
conditions, as in a priority-inversion situation.

pthread_mutex_unlock() will unlock a mutex if called by the owning

thread. Calling this routine is required after a thread has completed its
use of protected data if other threads are to acquire the mutex for their

work with the protected data. An error will be returned if:

If the mutex was already unlocked

If the mutex is owned by another thread

34

Daniele Loiacono

Example of Mutex Variables Usage:
Variables & Declarations

#include <pthread.h>

#include <cstdlib>

#include <iostream>

using namespace std;

#define NUMTHRDS 4

#define VECLEN 100

/* Global data */

double a[VECLEN];

double b[VECLEN];

double sum;

pthread_t callThd[NUMTHRDS];

pthread_mutex_t mutexsum;

void *dotprod (void *arg);

35

Daniele Loiacono

Example of Mutex Variables Usage:
Main (1)

int

main (int argc, char *argv[])

{

long i;

void *status;

pthread_attr_t attr;

/* initialize values */

for (i = 0; i < VECLEN; i++)

{

a[i] = 1.0;

b[i] = a[i];

}

pthread_mutex_init (&mutexsum, NULL);

36

Daniele Loiacono

Example of Mutex Variables Usage:
Main (2)

/* Create threads to perform the dotproduct */

pthread_attr_init (&attr);

pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_JOINABLE);

for (i = 0; i < NUMTHRDS; i++)

{

/*

Each thread works on a different set of data.

The offset is specified by 'i'. The size of

the data for each thread is indicated by VECLEN.

*/

pthread_create (&callThd[i], &attr, dotprod, (void *) i);

}

pthread_attr_destroy (&attr);

37

Daniele Loiacono

Example of Mutex Variables Usage:
Main (3)

/* Wait on the other threads */

for (i = 0; i < NUMTHRDS; i++)

{

pthread_join (callThd[i], &status);

}

/* After joining, print out the results and cleanup */

cout << "Sum = " << sum << endl;

pthread_mutex_destroy (&mutexsum);

pthread_exit (NULL);

}

38

Daniele Loiacono

Example of Mutex Variables Usage:
dotprod (1)

void *

dotprod (void *arg)

{

/* Define and use local variables for convenience */

int i, start, end, len, mysum;

long offset;

offset = (long) arg;

len = VECLEN / NUMTHRDS;

start = offset * len;

end = start + len;

39

Daniele Loiacono

Example of Mutex Variables Usage:
dotprod (2)

/*

Perform the dot product and assign result

to the appropriate variable in the structure.

*/

mysum = 0;

for (i = start; i < end; i++)

mysum += (a[i] * b[i]);

/*

Lock a mutex prior to updating the value in the shared

structure, and unlock it upon updating.

*/

pthread_mutex_lock (&mutexsum);

sum += mysum;

pthread_mutex_unlock (&mutexsum);

pthread_exit ((void *) 0);

}

40

