
Daniele Loiacono

Thread Posix: Condition Variables
Algoritmi e Calcolo Parallelo

Daniele Loiacono

References

 The material in this set of slide is taken from tutorials by Blaise
Barney from the Lawrence Livermore National Laboratory and from
slides of prof. Lanzi (Informatica B, A.A. 2009/2010)

 POSIX Threads Programming
Blaise Barney, Lawrence Livermore National Laboratory
https://computing.llnl.gov/tutorials/pthreads/

 Advanced Linux Programming

http://www.advancedlinuxprogramming.com/

2

Daniele Loiacono

Overview

 Condition variables provide yet another way for threads to
synchronize. While mutexes implement synchronization by
controlling thread access to data, condition variables allow
threads to synchronize based upon the actual value of data.

 Without condition variables, the programmer would need to
have threads continually polling (possibly in a critical
section), to check if the condition is met. This can be very
resource consuming since the thread would be continuously
busy in this activity. A condition variable is a way to achieve
the same goal without polling.

 A condition variable is always used in conjunction with a
mutex lock.

Daniele Loiacono

Mutexes vs Condition Variables

 Mutexes and Condition Variables are way for threads to
synchronize

Mutexes implement synchronization by controlling thread
access to data

Condition Variables allow threads to synchronize based
upon the actual value of data.

 Without condition variables, threads continually poll to check
if the condition is met

 This can be very resource consuming since the thread would
be continuously busy in this activity

 A condition variable is a way to achieve the same goal
without polling.

 A condition variable is always used in conjunction with a
mutex lock.

Daniele Loiacono

Typical Scenario

−Declare and initialize global data/variables

−Delare and initialize a condition variable object
−Declare and initialize an associated mutex

−Create threads A and B to do work Main
−Do work

−Lock associated mutex and check
of a global variable

−If value does not meet some

condition, perform a blocking wait
(automatically and atomically

unlocks the associated mutex)
− When signalled, wake up (mutex

is automatically and atomically

locked)
−Explicitly unlock mutex

−Continue

−Do work

−Lock mutex
−Change the value of the

global variable that Thread-A

is waiting upon
−If the new value met the

condition desired by Thread-
A, signal it toThread-A

−Unlock mutex

−Continue

A B

Join / Continue

Main

Daniele Loiacono

Declaration and initialization

 Condition variables must be declared with type
pthread_cond_t

 There are two ways to initialize a condition variable:

Statically, when it is declared. For example:
pthread_cond_t myconvar=PTHREAD_COND_INITIALIZER;

Dynamically, with the
pthread_cond_init(condition,attr)routine

• ID of the created condition variable is returned through
condition

• attr if not NULL, permits setting condition variable object

attributes

 pthread_cond_destroy() should be used to free a condition

variable that is no longer needed.

Daniele Loiacono

Waiting and Signaling on Condition
Variables

pthread_cond_wait (condition,mutex)

pthread_cond_signal (condition)

pthread_cond_broadcast (condition)

 pthread_cond_wait() blocks the calling thread until the
specified condition is signalled.

 pthread_cond_signal() routine is used to signal (or wake

up) another thread which is waiting on the condition
variable.

 pthread_cond_broadcast() routine should be used instead
of pthread_cond_signal() if more than one thread is in a

blocking wait state.

 It is a logical error to call pthread_cond_signal() before
calling pthread_cond_wait()

Daniele Loiacono

Waiting and Signaling on Condition
Variables (2)

 pthread_cond_wait()

should be called while mutex is locked and it will
automatically release the mutex while it waits

when wakes up, mutex will be automatically locked for
use by the thread

programmer is responsible for unlocking mutex when the
thread is finished with it

 pthread_cond_signal()

should be called after mutex is locked

must unlock mutex in order for pthread_cond_wait()

routine to complete

Daniele Loiacono

Example

 The main routine creates three threads.

Two of the threads perform work and update a "count" variable.

The third thread waits until the count variable reaches a
specified value

#define NUM_THREADS 3

#define TCOUNT 10

#define COUNT_LIMIT 12

int count = 0;

int thread_ids[3] = {0,1,2};

pthread_mutex_t count_mutex;

pthread_cond_t count_threshold_cv;

void *inc_count(void *t){…}

void *watch_count(void *t){…}

int main (int argc, char *argv[]){…}

Daniele Loiacono

Example (2)

int main (int argc, char *argv[]){

int I;

long t1=1, t2=2, t3=3;

pthread_t threads[3];

pthread_attr_t attr;

pthread_mutex_init(&count_mutex, NULL);

pthread_cond_init (&count_threshold_cv, NULL);

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

pthread_create(&threads[0], &attr, watch_count, (void *)t1);

pthread_create(&threads[1], &attr, inc_count, (void *)t2);

pthread_create(&threads[2], &attr, inc_count, (void *)t3);

for (i=0; i<NUM_THREADS; i++) { /* Wait for all threads */

pthread_join(threads[i], NULL);

}

pthread_attr_destroy(&attr);

pthread_mutex_destroy(&count_mutex);

pthread_cond_destroy(&count_threshold_cv);

pthread_exit(NULL);

}

Daniele Loiacono

Example (3)

void *inc_count(void *t){

long my_id = (long)t;

for (int i=0; i<TCOUNT; i++) {

pthread_mutex_lock(&count_mutex);

count++;

if (count == COUNT_LIMIT) { pthread_cond_signal(&count_threshold_cv); }

pthread_mutex_unlock(&count_mutex);

sleep(1);

}

pthread_exit(NULL);

}

void *watch_count(void *t){

long my_id = (long)t;

pthread_mutex_lock(&count_mutex);

if (count<COUNT_LIMIT) {

pthread_cond_wait(&count_threshold_cv, &count_mutex);

count += 125;

}

pthread_mutex_unlock(&count_mutex);

pthread_exit(NULL);

}

