
Daniele Loiacono

Introduction to CUDA
Algoritmi e Calcolo Parallelo

Daniele Loiacono

References

 This set of slides is mainly based on:

CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest

National Laboratory

Slide of Applied Parallel Programming (ECE498@UIUC)
http://courses.engr.illinois.edu/ece498/al/

 Useful references

Programming Massively Parallel Processors: A Hands-on
Approach, David B. Kirk and Wen-mei W. Hwu

http://www.gpgpu.it/ (CUDA Tutorial)

GPGPU

Daniele Loiacono

What is (Historical) GPGPU ?

 General Purpose computation using GPU and graphics API
in applications other than 3D graphics

GPU accelerates critical path of application

 Data parallel algorithms leverage GPU attributes

Large data arrays, streaming throughput

Fine-grain SIMD parallelism

Low-latency floating point (FP) computation

 Applications – see //GPGPU.org

Game effects (FX) physics, image processing

Physical modeling, computational engineering, matrix algebra,
convolution, correlation, sorting

Daniele Loiacono

GPGPU Constraints

 Dealing with graphics API

Working with the corner cases of the
graphics API

 Addressing modes

Limited texture size/dimension

 Shader capabilities

Limited outputs

 Instruction sets

Lack of Integer & bit ops

 Communication limited

Between pixels

Daniele Loiacono

Why GPUs?

 The GPU has evolved into a very flexible and powerful processor:

It’s programmable using high-level languages

Now supports 32-bit and 64-bit floating point IEEE-754 precision

It offers lots of GFLOPS

 GPU in every PC and workstation

6

Daniele Loiacono

What is behind such an evolution?

 The GPU is specialized for compute-intensive, highly parallel
computation (exactly what graphics rendering is about)

So, more transistors can be devoted to data processing
rather than data caching and flow control

 The fast-growing video game industry exerts strong economic
pressure that forces constant innovation

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

7

Daniele Loiacono

Application Domains

Oil & Gas Finance Medical Biophysics Numerics Audio Video Imaging

GPU
(Parallel Computing)

Graphics

CPU
(Sequential Computing)

Massive
Data

Parallelism

Instruction
Level

Parallelism

Data Fits in Cache Larger Data Sets

8

Daniele Loiacono

GPUs

 Each NVIDIA GPU has up to 448
parallel cores

 Within each core

Floating point unit

Logic unit (add, sub, mul, madd)

Move, compare unit

Branch unit

 Cores managed by thread manager

Thread manager can spawn and
manage
12,000+ threads per core

Zero overhead thread switching

9

NVIDIA Fermi
Architecture

CUDA

Daniele Loiacono

CUDA Parallel Computing Architecture

ATI’s Compute
“Solution”

Compute Unified Device
Architecture (CUDA)

 Parallel computing
architecture and
programming model

 Includes a C compiler plus
support for OpenCL and

DX11 Compute

 Architected to natively
support all computational
interfaces (standard
languages and APIs)

 NVIDIA GPU architecture
accelerates CUDA

• Hardware and software
designed together for
computing

• Expose the computational
horsepower of NVIDIA GPUs

• Enable general-purpose
GPU computing

Daniele Loiacono

CUDA is C for Parallel Processors

 CUDA is industry-standard C with minimal extensions

Write a program for one thread

Instantiate it on many parallel threads

Familiar programming model and language

 CUDA is a scalable parallel programming model

Program runs on any number of processors without
recompiling

 CUDA parallelism applies to both CPUs and GPUs

Compile the same program source to run on different
platforms with widely different parallelism

Map to CUDA threads to GPU threads or to CPU vectors

Daniele Loiacono

A Highly Multithreaded Coprocessor

 The GPU is a highly parallel compute coprocessor

serves as a coprocessor for the host CPU

has its own device memory with high bandwidth
interconnect

13

GPU

CPU

Daniele Loiacono

CUDA Uses Extensive Multithreading

 CUDA threads express fine-grained data parallelism
Map threads to GPU threads
Virtualize the processors
You must rethink your algorithms to be aggressively
parallel

 CUDA thread blocks express coarse-grained parallelism
Blocks hold arrays of GPU threads, define shared memory
boundaries
Allow scaling between smaller and larger GPUs

 GPUs execute thousands of lightweight threads
(In graphics, each thread computes one pixel)
One CUDA thread computes one result (or several results)
Hardware multithreading & zero-overhead scheduling

Daniele Loiacono

CUDA Kernels and Threads

 Parallel portions of an application are executed on the device
as kernels

One kernel is executed at a time

Many threads execute each kernel

 Differences between CUDA and CPU threads

CUDA threads are extremely lightweight
• Very little creation overhead

• Instant switching

CUDA uses 1000s of threads to achieve efficiency
• Multi-core CPUs can use only a few

Definitions
Device = GPU
Host = CPU
Kernel = function called from the host that
runs on the device

Daniele Loiacono

Arrays of Parallel Threads

 A CUDA kernel is executed by an array of threads

All threads run the same program, SIMT (Singe Instruction
multiple threads)

Each thread uses its ID to compute addresses and make
control decisions

…

float x = input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

Daniele Loiacono

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(2, 1)

Block
(1, 1)

Host

Kernel
2

Kernel
1

Grid 2

Block (1, 1)

CUDA Programming Model

A kernel is executed by a grid,
which contain blocks.

These blocks contain our
threads.

 A thread block is a batch of
threads that can cooperate:

Sharing data through shared
memory

Synchronizing their
execution

 Threads from different blocks
operate independently

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

17

Daniele Loiacono

Thread Blocks: Scalable Cooperation

 Divide monolithic thread array into multiple blocks

Threads within a block cooperate via shared memory

Threads in different blocks cannot cooperate

 Enables programs to transparently scale to any number of
processors!

…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

Thread Block 0

…
…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

Thread Block 1

…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

Thread Block N - 1

76543210 76543210 76543210

Daniele Loiacono

Thread Cooperation

 Thread cooperation is a powerful feature of CUDA

Threads can cooperate via on-chip shared memory and

synchronization

 The on-chip shared memory within one block allows:

Share memory accesses, drastic memory bandwidth
reduction

Share intermediate results, thus: save computation

 Makes algorithm porting to GPUs a lot easier
(vs. GPGPU and its strict stream processor model)

Daniele Loiacono

Transparent Scalability

 Hardware is free to schedule thread blocks on any
processor

Kernels scale to any number of parallel multiprocessors

Device BDevice A

Block 1Block 0

Block 3Block 2

Block 5Block 4

Block 7Block 6

Block 1Block 0 Block 3Block 2

Block 5Block 4 Block 7Block 6

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Daniele Loiacono

 Registers (per thread)

 Shared Memory

Shared among threads in a
single block

On-chip, small

As fast as registers

 Global Memory

Kernel inputs and outputs
reside here

Off-chip, large

Uncached (use coalescing)

Note: The host can read & write global

memory but not shared memory

Grid

Block (1, 0)Block (0, 0)

Host

Memory model seen from CUDA Kernel

Global

Memory

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Daniele Loiacono

Execution Model

 Kernels are launched in grids

One kernel executes at a time

 A block executes on one multiprocessor

Does not migrate

 Several blocks can reside concurrently on one multiprocessor

Number is limited by multiprocessor resources
• Register file is partitioned among all resident threads

• Shared memory is partitioned among all resident thread blocks

Daniele Loiacono

Heterogeneous programming in CUDA

Serial Code

Parallel Kernel

KernelA<<< nBlk, nTid >>>(args);

Serial Code

Parallel Kernel

KernelB<<< nBlk, nTid >>>(args);

…

float x =

input[thread

ID];

…

float x =

input[thread

ID];

…
…

float x =

input[thread

ID];

…

float x =

input[thread

ID];

…

float x =

input[thread

ID];

…
…

float x =

input[thread

ID];

Daniele Loiacono

CUDA Advantages over Legacy GPGPU

 Random access byte-addressable memory

Thread can access any memory location

 Unlimited access to memory

Thread can read/write as many locations as needed

 Shared memory (per block) and thread synchronization

Threads can cooperatively load data into shared memory

Any thread can then access any shared memory location

 Low learning curve

Just a few extensions to C

No knowledge of graphics is required

Daniele Loiacono

Compiling C for CUDA Applications

NVCC CPU Code

C CUDA
Key Kernels

CUDA object
files

Rest of C
Application

CPU object
files

Linker

CPU-GPU
Executable

Daniele Loiacono

Compiling CUDA

 Any source file containing CUDA language extensions must be
compiled with NVCC

NVCC is a compiler driver

 Works by invoking all the necessary tools and compilers like
cudacc, g++, cl,...

 NVCC outputs

C code (host CPU Code)

• Must then be compiled with the rest of the application

using another tool

PTX

• Object code directly

• Or, PTX source, interpreted at runtime

Daniele Loiacono

Linking

 Any executable with CUDA code requires two dynamic
libraries:

The CUDA core library (cuda)

The CUDA runtime library (cudart)

Daniele Loiacono

Debugging Using the
Device Emulation Mode

 An executable compiled in device emulation mode (nvcc -

deviceemu) runs completely on the host using the CUDA
runtime

No need of any device and CUDA driver

Each device thread is emulated with a host thread

 Running in device emulation mode, one can:

Use host native debug support (breakpoints, inspection,
etc.)

Access any device-specific data from host code and
vice-versa

Call any host function from device code (e.g. printf)
and vice-versa

Detect deadlock situations caused by improper usage of
__syncthreads

Daniele Loiacono

Device Emulation Mode Pitfalls

 Emulated device threads execute sequentially, so
simultaneous accesses of the same memory location by
multiple threads could produce different results.

 Dereferencing device pointers on the host or host pointers
on the device can produce correct results in device
emulation mode, but will generate an error in device
execution mode

