

Daniele Loiacono

References

- □ This set of slides is mainly based on:
 - CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory
 - Slide of Applied Parallel Programming (ECE498@UIUC) http://courses.engr.illinois.edu/ece498/al/
- Useful references
 - Programming Massively Parallel Processors: A Hands-on Approach, David B. Kirk and Wen-mei W. Hwu
 - http://www.gpgpu.it/ (CUDA Tutorial)

GPGPU

What is (Historical) GPGPU?

- General Purpose computation using GPU and graphics API in applications other than 3D graphics
 - GPU accelerates critical path of application
- Data parallel algorithms leverage GPU attributes
 - Large data arrays, streaming throughput
 - Fine-grain SIMD parallelism
 - Low-latency floating point (FP) computation
- □ Applications see //GPGPU.org
 - Game effects (FX) physics, image processing
 - Physical modeling, computational engineering, matrix algebra, convolution, correlation, sorting

GPGPU Constraints

Dealing with graphics API

- Working with the corner cases of the graphics API
- Addressing modes
 - Limited texture size/dimension
- Shader capabilities
 - Limited outputs
- Instruction sets
 - Lack of Integer & bit ops
- Communication limited
 - Between pixels

Why GPUs?

□ The GPU has evolved into a very flexible and powerful processor:

- It's programmable using high-level languages
- Now supports 32-bit and 64-bit floating point IEEE-754 precision
- It offers lots of GFLOPS
- □ GPU in every PC and workstation

POLITECNICO DI MILANO

Daniele Loiacono

What is behind such an evolution?

- The GPU is specialized for compute-intensive, highly parallel computation (exactly what graphics rendering is about)
 - So, more transistors can be devoted to data processing rather than data caching and flow control

The fast-growing video game industry exerts strong economic pressure that forces constant innovation

Application Domains

Daniele Loiacono

GPUs

Each NVIDIA GPU has up to 448 parallel cores

Within each core

- Floating point unit
- Logic unit (add, sub, mul, madd)
- Move, compare unit
- Branch unit

Cores managed by thread manager

- Thread manager can spawn and manage 12,000+ threads per core
- Zero overhead thread switching

NVIDIA Fermi Architecture

CUDA Parallel Computing Architecture

Daniele Loiacono

- Parallel computing architecture and programming model
- Includes a C compiler plus support for OpenCL and DX11 Compute
- Architected to natively support all computational interfaces (standard languages and APIs)
- NVIDIA GPU architecture accelerates CUDA
 - Hardware and software designed together for computing
 - Expose the computational horsepower of NVIDIA GPUs
 - Enable general-purpose
 GPU computing

CUDA is C for Parallel Processors

- □ CUDA is industry-standard C with minimal extensions
 - Write a program for one thread
 - Instantiate it on many parallel threads
 - Familiar programming model and language
- CUDA is a scalable parallel programming model
 - Program runs on any number of processors without recompiling
- CUDA parallelism applies to both CPUs and GPUs
 - Compile the same program source to run on different platforms with widely different parallelism
 - Map to CUDA threads to GPU threads or to CPU vectors

□ The GPU is a highly parallel compute coprocessor

- serves as a coprocessor for the host CPU
- has its own device memory with high bandwidth interconnect

CUDA Uses Extensive Multithreading

- CUDA threads express fine-grained data parallelism
 - Map threads to GPU threads
 - Virtualize the processors
 - You must rethink your algorithms to be aggressively parallel

CUDA thread blocks express coarse-grained parallelism

- Blocks hold arrays of GPU threads, define shared memory boundaries
- Allow scaling between smaller and larger GPUs
- GPUs execute thousands of lightweight threads
 - (In graphics, each thread computes one pixel)
 - One CUDA thread computes one result (or several results)
 - Hardware multithreading & zero-overhead scheduling

CUDA Kernels and Threads

- Parallel portions of an application are executed on the device as kernels
 - One kernel is executed at a time
 - Many threads execute each kernel
- Differences between CUDA and CPU threads
 - CUDA threads are extremely lightweight
 - Very little creation overhead
 - Instant switching
 - CUDA uses 1000s of threads to achieve efficiency
 - Multi-core CPUs can use only a few

Definitions Device = GPU Host = CPU Kernel = function called from the host that runs on the device

Arrays of Parallel Threads

□ A CUDA kernel is executed by an array of threads

- All threads run the same program, SIMT (Singe Instruction multiple threads)
- Each thread uses its ID to compute addresses and make control decisions

threadID float x = input[threadID]; float y = func(x); output[threadID] = y;

CUDA Programming Model

- A kernel is executed by a grid, which contain blocks.
- These blocks contain our threads.
- A thread block is a batch of threads that can cooperate:
 - Sharing data through shared memory
 - Synchronizing their execution
- Threads from different blocks operate independently

POLITECNICO DI MILANO

Daniele Loiacono

Thread Blocks: Scalable Cooperation

Divide monolithic thread array into multiple blocks

- Threads within a block cooperate via shared memory
- Threads in different blocks cannot cooperate
- Enables programs to transparently scale to any number of processors!

Thread Cooperation

- □ Thread cooperation is a powerful feature of CUDA
 - Threads can cooperate via on-chip shared memory and synchronization
- □ The on-chip shared memory within one block allows:
 - Share memory accesses, drastic memory bandwidth reduction
 - Share intermediate results, thus: save computation
- Makes algorithm porting to GPUs a *lot* easier (vs. GPGPU and its strict stream processor model)

Transparent Scalability

- Hardware is free to schedule thread blocks on any processor
 - Kernels scale to any number of parallel multiprocessors

Memory model seen from CUDA Kernel

- Registers (per thread)
- Shared Memory
 - Shared among threads in a single block
 - On-chip, small
 - As fast as registers

Global Memory

- Kernel inputs and outputs reside here
- Off-chip, large
- Uncached (use coalescing)

Note: The host can read & write global memory but not shared memory

Execution Model

- Kernels are launched in grids
 - One kernel executes at a time
- A block executes on one multiprocessor
 - Does not migrate
- Several blocks can reside concurrently on one multiprocessor
 - Number is limited by multiprocessor resources
 - Register file is partitioned among all resident threads
 - Shared memory is partitioned among all resident thread blocks

Heterogeneous programming in CUDA

POLITECNICO DI MILANO

Daniele Loiacono

CUDA Advantages over Legacy GPGPU

- Random access byte-addressable memory
 - Thread can access any memory location
- Unlimited access to memory
 - Thread can read/write as many locations as needed
- □ Shared memory (per block) and thread synchronization
 - Threads can cooperatively load data into shared memory
 - Any thread can then access any shared memory location
- Low learning curve
 - Just a few extensions to C
 - No knowledge of graphics is required

Compiling C for CUDA Applications

POLITECNICO DI MILANO

Daniele Loiacono

Compiling CUDA

- Any source file containing CUDA language extensions must be compiled with NVCC
 - NVCC is a compiler driver
- Works by invoking all the necessary tools and compilers like cudacc, g++, cl,...
- □ NVCC outputs
 - C code (host CPU Code)
 - Must then be compiled with the rest of the application using another tool
 - ► PTX
 - Object code directly
 - Or, PTX source, interpreted at runtime

Linking

- Any executable with CUDA code requires two dynamic libraries:
 - The CUDA core library (cuda)
 - The CUDA runtime library (cudart)

Debugging Using the Device Emulation Mode

- An executable compiled in device emulation mode (nvcc deviceemu) runs completely on the host using the CUDA runtime
 - No need of any device and CUDA driver
 - Each device thread is emulated with a host thread
- Running in device emulation mode, one can:
 - Use host native debug support (breakpoints, inspection, etc.)
 - Access any device-specific data from host code and vice-versa
 - Call any host function from device code (e.g. printf) and vice-versa
 - Detect deadlock situations caused by improper usage of syncthreads

Device Emulation Mode Pitfalls

- Emulated device threads execute sequentially, so simultaneous accesses of the same memory location by multiple threads could produce different results.
- Dereferencing device pointers on the host or host pointers on the device can produce correct results in device emulation mode, but will generate an error in device execution mode