

Daniele Loiacono

References

- □ This set of slides is mainly based on:
 - CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory
 - Slide of Applied Parallel Programming (ECE498@UIUC) http://courses.engr.illinois.edu/ece498/al/
- Useful references
 - Programming Massively Parallel Processors: A Hands-on Approach, David B. Kirk and Wen-mei W. Hwu
 - http://www.gpgpu.it/ (CUDA Tutorial)
 - CUDA Programming Guide http://developer.nvidia.com/object/gpucomputing.html
 - CUDA C Best Practices Guide http://developer.download.nvidia.com/compute/cuda/3_2_prod/ toolkit/docs/CUDA_C_Best_Practices_Guide.pdf

Optimize Algorithms for the GPU

- □ Maximize independent parallelism
- Maximize arithmetic intensity (math/bandwidth)
- Sometimes it's better to recompute than to cache
 GPU spends its transistors on ALUs, not memory
- Do more computation on the GPU to avoid costly data transfers
 - Even low parallelism computations can sometimes be faster than transferring back and forth to host

Optimize Memory Access

Coalesced vs. Non-coalesced = order of magnitude
 Global/Local device memory

Optimize for spatial locality in cached texture memory

□ In shared memory, avoid high-degree bank conflicts

Take Advantage of Shared Memory

- Hundreds of times faster than global memory
- □ Threads can cooperate via shared memory
- Use one / a few threads to load / compute data shared by all threads
- Use it to avoid non-coalesced access: stage loads and stores in shared memory to re-order noncoalesceable addressing

Use Parallelism Efficiently

- Partition your computation to keep the GPU multiprocessors equally busy
 - Many threads, many thread blocks
- Keep resource usage low enough to support multiple active thread blocks per multiprocessor
 - Registers, shared memory

Hardware Implementation

Hardware Architecture

... TPC TPC TPC TPC TPC TPC **Texture Processor Cluster Streaming Multiprocessor Instruction L1** Data L1 Instruction Fetch/Dispatch SM **Shared Memory** TEX SP SP SP SP SM SFU SFU SP SP SP SP

Streaming Processor Array

Daniele Loiacono

POLITECNICO DI MILANO

CUDA Terminology

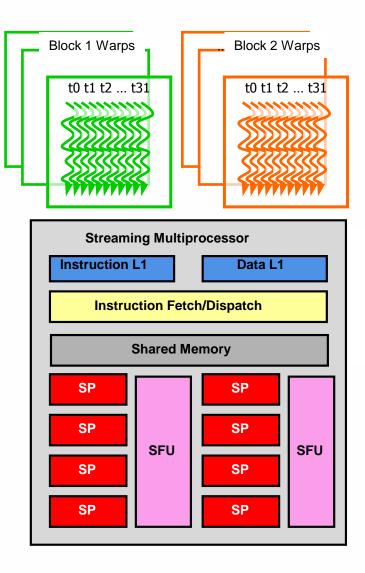
- □ Streaming Processor Array (SPAs) (e.g., 8 TPCs)
- □ Texture Processor Cluster (e.g., 2 SMs + TEX)
- Streaming Multiprocessor (e.g., 8 SPs)
 - Multi-threaded processor core
 - Fundamental processing unit for CUDA thread block
- Streaming Processor

Scalar ALU for a single CUDA thread

- Warp: a group of threads executed physically in parallel (SIMD)
 - Half-warp: the first or second half of a warp of threads

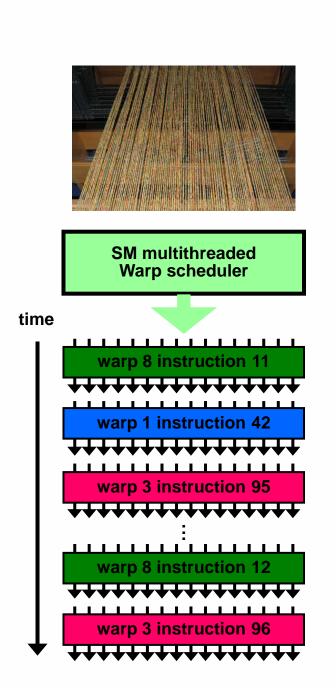
Thread Scheduling/Execution

- Each Thread Blocks is divided in 32-thread Warps
 - This is an implementation decision, not part of the CUDA programming model
- Warps are scheduling units in SM
- If 3 blocks are assigned to an SM and each Block has 256 threads, how many Warps are there in an SM?
 - Each Block is divided into 256/32 = 8 Warps
 - There are 8 * 3 = 24 Warps
 - At any point in time, only one of the 24 Warps will be selected for instruction fetch and execution.



SM Warp Scheduling

- SM hardware implements zero-overhead Warp scheduling
 - Warps whose next instruction has its operands ready for consumption are eligible for execution
 - Eligible Warps are selected for execution on a prioritized scheduling policy
 - All threads in a Warp execute the same instruction when selected
- 4 clock cycles needed to dispatch the same instruction for all threads in a Warp in G8x/G200
 - If one global memory access is needed for every 4 instructions
 - A minimal of 13 Warps are needed to fully tolerate 200-cycle memory latency



Memory Optimization

Overview

- Optimizing host-device data transfers
- Coalescing global data accesses
- Using shared memory effectively

Host-Device Data Transfers

- Device memory to host memory bandwidth much lower than device memory to device bandwidth
 - 8GB/s peak (PCI-e x16 Gen 2) vs. 141 GB/s peak (GTX 280)
- Minimize transfers
 - Intermediate data structures can be allocated, operated on, and deallocated without ever copying them to host memory
- Group transfers
 - One large transfer much better than many small ones

Page-Locked Data Transfers

- cudaMallocHost() allows allocation of page-locked ("pinned") host memory
- Enables highest cudaMemcpy performance
 - 3.2 GB/s on PCI-e x16 Gen1
 - 5.2 GB/s on PCI-e x16 Gen2
- □ See the "bandwidthTest" CUDA SDK sample
- □ Use with caution!!
 - Allocating too much page-locked memory can reduce overall system performance
 - Test your systems and apps to learn their limits

Asynchronous memory copy

- Asynchronous host-device memory copy for pinned memory (allocated with "cudaMallocHost" in C) frees up CPU on all CUDA capable devices
- Overlap implemented by using a stream
- □ Stream = Sequence of operations that execute in order
- □ Stream API:
 - cudaMemcpyAsync(dst, src, size, direction, stream);
 - The default stream is 0
- **Example:**

Overlap kernel and memory copy

- Concurrent execution of a kernel and a host device memory copy for pinned memory
 - Devices with compute capability >= 1.1 (G84 and up)
 - Overlaps kernel execution in one stream with a memory copy from another stream

Example:

cudaStreamCreate(&stream1);

```
cudaStreamCreate(&stream2);
```

```
cudaMemcpyAsync(dst, src, size, dir, stream1);
```

```
kernel<<<grid, block, 0, stream2>>>(...);
```


Global and Shared Memory

- □ Global memory not cached on G8x GPUs
 - High latency, but launching more threads hides latency
 - Important to minimize accesses
 - Coalesce global memory accesses (more later)
- □ Shared memory is on-chip, very high bandwidth
 - Low latency
 - Like a user-managed per-multiprocessor cache
 - Try to minimize or avoid bank conflicts (more later)

Texture and Constant Memory

□ Texture partition is cached

- Uses the texture cache also used for graphics
- Optimized for 2D spatial locality
- Best performance when threads of a warp read locations that are close together in 2D
- Constant memory is cached
 - 4 cycles per address read within a single warp
 - Total cost 4 cycles if all threads in a warp read same address
 - Total cost 64 cycles if all threads read different addresses

Global Memory Reads/Writes

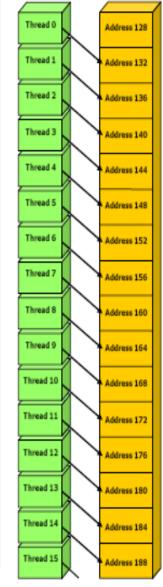
- □ Global memory is not always cached (e.g., on G8x/GT200)
- □ Highest latency instructions: 400-600 clock cycles
- □ Likely to be a performance bottleneck
- Optimizations can greatly increase performance

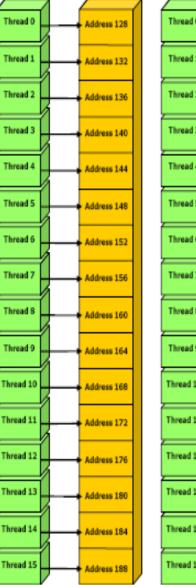
Coalescing (compute capability 1.0 / 1.1)

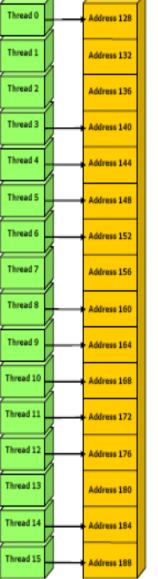
- □ A coordinated read by a half-warp (16 threads)
- □ A contiguous region of global memory:
 - ▶ 64 bytes each thread reads a word: int, float, ...
 - 128 bytes each thread reads a double-word: int2, float2, ...
 - 256 bytes each thread reads a quad-word: int4, float4, ...
- Additional restrictions:
 - Starting address for a region must be a multiple of region size
 - The kth thread in a half-warp must access the kth element in a block being read
- □ Exception: not all threads must be participating
 - Predicated access, divergence within a halfwarp

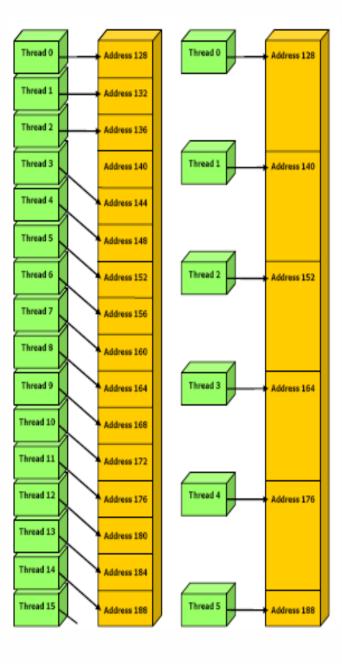
Coalescence (1.0/1.1): examples

Thread 0 Address 128 Thread 1 Address 132 Thread 2 Address 136 Thread 3 Address 140 Thread 4 Address 144 Thread 5 Address 148 Thread 6 Address 152 Thread 7 Address 156 Thread 8 Address 160 Thread 9 Address 164 Thread 10 Address 168 Thread 11 Address 172 Thread 12 Address 176 Thread 13 Address 180 Thread 14 Address 184 Thread 15 Address 188









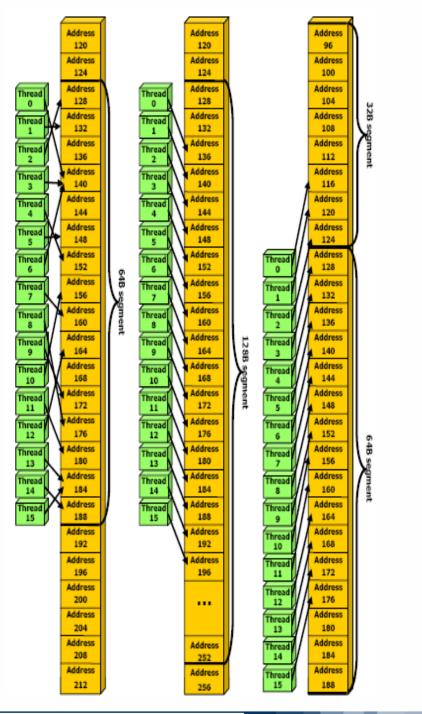
POLITECNICO DI MILANO

Daniele Loiacono

Coalescing (compute capability >= 1.2)

- A single memory transaction is issued for a half warp if words accessed by all threads lie in the same segment of size equal to:
 - 32 bytes if all threads access 8-bit words
 - ▶ 64 bytes if all threads access 16-bit words
 - 128 bytes if all threads access 32-bit or 64-bit words
- □ Achieved for any pattern of addresses requested by the half-warp
 - including patterns where multiple threads access the same address
- □ If a half-warp addresses words in n different segments, n memory transactions are issued (one for each segment)

Coalescence (1.2): examples



POLITECNICO DI MILANO

Daniele Loiacono

Coalescing: Timing Results

Experiment:

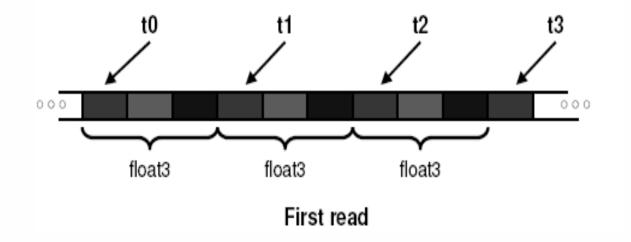
- Kernel: read a float, increment, write back
- 3M floats (12MB)
- Times averaged over 10K runs
- □ 12K blocks x 256 threads:
 - ▶ 356µs coalesced
 - ► 357µs coalesced, some threads don't participate
 - 3,494µs permuted/misaligned thread access

Uncoalesced Access: float3 Case

□ float3 is 12 bytes

Each thread ends up executing 3 reads

- sizeof(float3) != 4, 8, or 16
- Half-warp reads three 64B non-contiguous regions



POLITECNICO DI MILANO

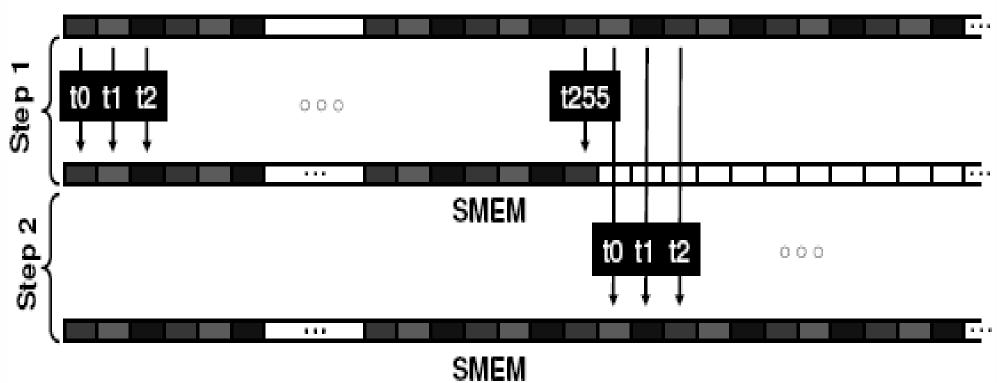
Uncoalesced float3 Code

```
__global__ void accessFloat3(float3 *d_in, float3 d_out)
{
    int index = blockIdx.x * blockDim.x + threadIdx.x;
    float3 a = d_in[index];
    a.x += 2;
    a.y += 3;
    a.z += 4;
    d_out[index] = a;
}
```

Shared Memory

- ~Hundred times faster than global memory
- □ Cache data to reduce global memory accesses
- □ Threads can cooperate via shared memory
- □ Use it to avoid non-coalesced access
 - Stage loads and stores in shared memory to re-order noncoalesceable addressing

Coalescing float3 Access



GMEM

Similarly, Step3 starting at offset 512

Daniele Loiacono

POLITECNICO DI MILANO

Coalesced Access: float3 Case

□ Use shared memory to allow coalescing

- Need sizeof(float3)*(threads/block) bytes of SMEM
- Each thread reads 3 scalar floats:
 - Offsets: 0, (threads/block), 2*(threads/block)
 - These will likely be processed by other threads, so sync
- Processing
 - Each thread retrieves its float3 from SMEM array
 - Cast the SMEM pointer to (float3*)
 - Use thread ID as index
 - Rest of the compute code does not change!

Coalesced float3 Code

```
global void accessInt3Shared(float *g in,
                          float *g out)
                         int dim = blockDim.x;
Read the
                         int index = 3 * blockIdx.x * dim +
input
                          threadIdx.x;
                         shared float s data[dim*3];
through
                         s data[threadIdx.x] = g in[index];
SMEM
                         s data[threadIdx.x+dim] = g in[index+dim];
                         s data[threadIdx.x+2*dim] = g in[index+dim*2];
                           syncthreads();
                         float3 a = ((float3*)s data)[threadIdx.x];
Compute
code
                         a.x += 2;
Is not
                         a.y += 3;
changed
                         a.z += 4;
                         ((float3*)s data)[threadIdx.x] = a;
Write the
                           syncthreads();
result
                         g out[index] = s data[threadIdx.x];
through
                         g out[index+dim] = s data[threadIdx.x+dim];
SMEM
                         g out[index+dim*2] = s data[threadIdx.x+dim*2];
```

Daniele Loiacono

POLITECNICO DI MILANO

Coalescing: Timing Results

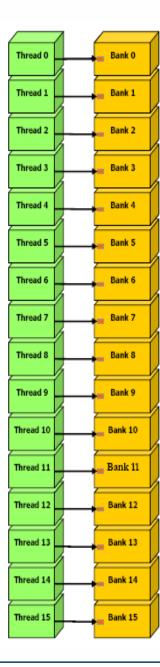
Experiment:

- Kernel: read a float, increment, write back
- 3M floats (12MB)
- Times averaged over 10K runs
- □ 12K blocks x 256 threads reading floats:
 - ► 356µs coalesced
 - ► 357µs coalesced, some threads don't participate
 - 3,494µs permuted/misaligned thread access
- □ 4K blocks x 256 threads reading float3s:
 - ► 3,302µs float3 uncoalesced
 - ► 359µs float3 coalesced through shared memory

Parallel Memory Architecture

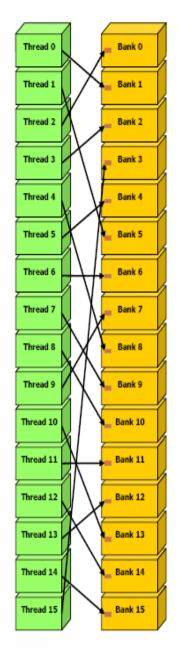
- Many threads accessing memory
 - Therefore, memory is divided into banks
 - Essential to achieve high bandwidth
- □ Each bank can service one address per cycle
 - A memory can service as many simultaneous accesses as it has banks
- Multiple simultaneous accesses to a bank result in a bank conflict
 - Conflicting accesses are serialized

Bank Addressing Examples



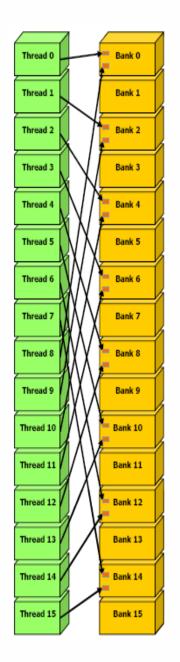
- No bank conflicts
 - Left: linear addressing stride == 1
 - Right: random 1:1 permutation

Daniele Loiacono



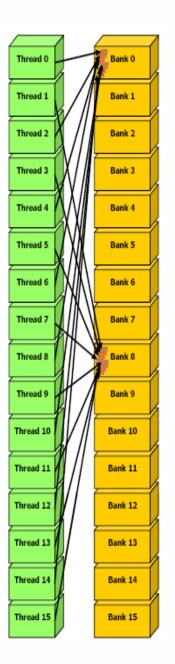
POLITECNICO DI MILANO

Bank Addressing Examples



Left: 2-way Bank Conflicts

- Linear addressing stride == 2
- Right: 8-way Bank Conflicts
 - Linear addressing stride == 8



Shared memory bank conflicts

- Shared memory is as fast as registers if there are no bank conflicts
- □ The fast case:
 - If all threads of a half-warp access different banks, there is no bank conflict
 - If all threads of a half-warp read the identical address, there is no bank conflict (broadcast)
- □ The slow case:
 - Bank Conflict: multiple threads in the same half-warp access the same bank
 - Must serialize the accesses
 - Cost = max # of simultaneous accesses to a single bank

How addresses map to banks on G80/GT200

- □ Bandwidth of each bank is 32 bit per 2 clock cycles
- □ Successive 32-bit words are assigned to successive banks
- □ G80/GT200 have 16 banks
 - So bank = address % 16
 - Same as the size of a half-warp
 - No bank conflicts between different half-warps, only within a single halfwarp

A common case

__shared__ float shared[32];
float data = shared[BaseIndex + s * tid];

 \Box s is the stride

□ Threads tid and tid+n access the same banks if:

- s*n is a multiple of the number of banks m (m=16)
- n is a multiple of m/d, where d is the greatest common divisor of m and s
- □ No bank conflicts if:
 - size(half_warp) <= m/d = 16 / d</pre>
 - m/d = 16 (d = 1) -> s must be odd!

Matrix transpose example

{

}

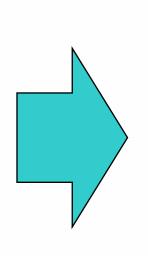
```
__global__ void transpose_naive(float *odata, float* idata, int width, int height)
```

```
unsigned int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
```

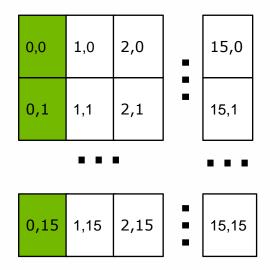
```
if (xIndex < width && yIndex < height)
{
    unsigned int index_in = xIndex + width * yIndex;
    unsigned int index_out = yIndex + height * xIndex;
    odata[index_out] = idata[index_in];</pre>
```

Uncoalesced transpose





Writes outputs to GMEM



Daniele Loiacono

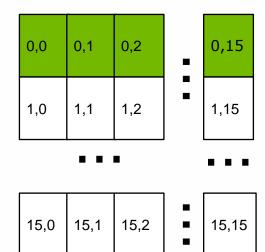
POLITECNICO DI MILANO

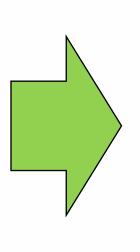
Coalesced Transpose

- Matrix is partitioned into square tiles
- Threadblock (bx,by):
 - Read the (bx,by) input tile, store into SMEM
 - Write the SMEM data to (by,bx) output tile
 - Transpose the indexing into SMEM
- □ Thread (tx,ty):
 - Reads element (tx,ty) from input tile
 - Writes element (tx,ty) into output tile
- Coalescing is achieved if:
 - Block/tile dimensions are multiples of 16

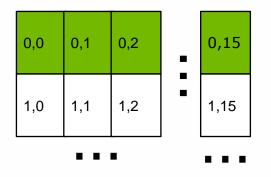
Coalesced Transpose

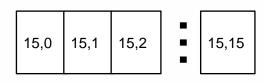
Reads from GMEM



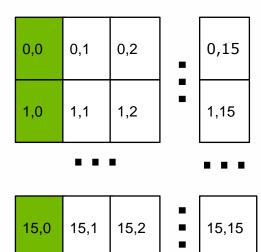


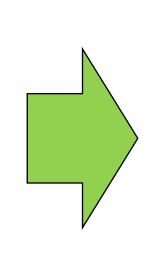
Writes to SMEM



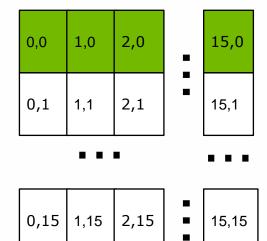


Reads from SMEM





Writes to GMEM

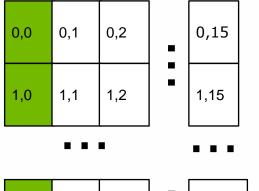


POLITECNICO DI MILANO

Daniele Loiacono

SMEM Optimization

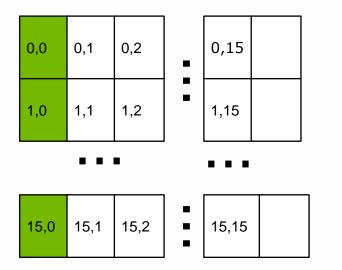
Reads from SMEM



15,0 15,1 15,2 15,15

Threads read SMEM with stride = 16 Bank conflicts

Reads from SMEM



Solution

- Allocate an extra column
- ▶ Read stride = 17
- Threads read from consecutive banks

POLITECNICO DI MILANO

Optimized transpose

```
__global__ void transpose(float *odata, float *idata, int width, int height)
{
```

```
shared float block[BLOCK DIM][BLOCK DIM+1];
// read the matrix tile into shared memory
unsigned int xIndex = blockIdx.x * BLOCK DIM + threadIdx.x;
unsigned int yIndex = blockIdx.y * BLOCK DIM + threadIdx.y;
if((xIndex < width) && (yIndex < height))
{
    unsigned int index in = yIndex * width + xIndex;
    block[threadIdx.y][threadIdx.x] = idata[index in];
 syncthreads();
// write the transposed matrix tile to global memory
xIndex = blockIdx.y * BLOCK DIM + threadIdx.x;
yIndex = blockIdx.x * BLOCK DIM + threadIdx.y;
if((xIndex < height) && (yIndex < width))
{
    unsigned int index out = yIndex * height + xIndex;
    odata[index out] = block[threadIdx.x][threadIdx.y];
```


A Common Programming Strategy

- Global memory resides in device memory (DRAM) much slower access than shared memory
- So, a profitable way of performing computation on the device is to tile data to take advantage of fast shared memory:
 - Partition data into subsets that fit into shared memory
 - Handle each data subset with one thread block by:
 - Loading the subset from global memory to shared memory, using multiple threads to exploit memorylevel parallelism
 - Performing the computation on the subset from shared memory; each thread can efficiently multipass over any data element
 - Copying results from shared memory to global memory

A Common Programming Strategy (Cont.)

- Constant memory also resides in device memory (DRAM) much slower access than shared memory
 - But... cached!
 - Highly efficient access for read-only data
- Carefully divide data according to access patterns
 - ▶ R/Only \rightarrow constant memory (very fast if in cache)
 - ▶ R/W shared within Block \rightarrow shared memory (very fast)
 - ▶ R/W within each thread \rightarrow registers (very fast)
 - ▶ R/W inputs/results \rightarrow global memory (very slow)

Execution Configuration

Occupancy Optimization

- Thread instructions are executed sequentially, so executing other warps is the only way to hide latencies and keep the hardware busy
- Occupancy = Number of warps running concurrently on a multiprocessor divided by maximum number of warps that can run concurrently
- □ Limited by resource usage:
 - Registers
 - Shared memory

Grid/Block Size Heuristics

- □ # of blocks > # of multiprocessors
 - So all multiprocessors have at least one block to execute
- \Box # of blocks / # of multiprocessors > 2
 - Multiple blocks can run concurrently in a multiprocessor
 - Blocks that aren't waiting at a _____syncthreads() keep the hardware busy
 - Subject to resource availability registers, shared memory
- \Box # of blocks > 100 to scale to future devices
 - Blocks executed in pipeline fashion
 - 1000 blocks per grid will scale across multiple generations

Optimizing threads per block

- Choose threads per block as a multiple of warp size
 - Avoid wasting computation on under-populated warps
- More threads per block == better memory latency hiding
- □ But, more threads per block == fewer registers per thread
 - Kernel invocations can fail if too many registers are used
- Heuristics
 - Minimum: 64 threads per block
 - Only if multiple concurrent blocks
 - 192 or 256 threads a better choice
 - Usually still enough regs to compile and invoke successfully
 - This all depends on your computation, so experiment!

Occupancy != **Performance**

Increasing occupancy does not necessarily increase performance

BUT...

- Low-occupancy multiprocessors cannot adequately hide latency on memory-bound kernels
 - (It all comes down to arithmetic intensity and available parallelism)

Parameterize Your Application

Parameterization helps adaptation to different GPUs

- GPUs vary in many ways
 - # of multiprocessors
 - Memory bandwidth
 - Shared memory size
 - Register file size
 - Max. threads per block
- You can even make apps self-tuning
 - "Experiment" mode discovers and saves optimal configuration

Instructions and Flow Control

Instruction optimization

- □ Instruction cycles (per warp) = sum of
 - Operand read cycles
 - Instruction execution cycles
 - Result update cycles
- Therefore instruction throughput depends on
 - Nominal instruction throughput
 - Memory latency
 - Memory bandwidth
- "Cycle" refers to the multiprocessor clock rate
 1.35 GHz on the Tesla C870, for example

Maximizing Instruction Throughput

- Maximize use of high-bandwidth memory
 - Maximize use of shared memory
 - Minimize accesses to global memory
 - Maximize coalescing of global memory accesses
- Optimize performance by overlapping memory accesses with HW computation
 - High arithmetic intensity programs
 - i.e. high ratio of math to memory transactions
 - Many concurrent threads

Arithmetic Instruction Throughput

- Int and float add, shift, min, max and float mul, mad: 4 cycles per warp
 - int multiply (*) is by default 32-bit
 - requires multiple cycles / warp
 - Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit int multiply
- □ Integer divide and modulo are more expensive
 - Compiler will convert literal power-of-2 divides to shifts
 - It may miss some cases
 - Be explicit in cases where compiler can't tell that divisor is a power of 2!
 - Useful trick: foo % n == foo & (n-1) if n is a power of 2

Runtime Math Library

□ There are two types of runtime math operations

- func(): direct mapping to hardware ISA
 - Fast but lower accuracy (see prog. guide for details)
 - Examples: ____sin(x), ___exp(x), ___pow(x,y)
- func() : compile to multiple instructions
 - Slower but higher accuracy (5 ulp or less)
 - Examples: sin(x), exp(x), pow(x,y)

The -use_fast_math compiler option forces every func() to compile to __func()

GPU results may not match CPU

- Many variables: hardware, compiler, optimization settings
- □ CPU operations aren't strictly limited to 0.5 ulp
 - Sequences of operations can be more accurate due to 80bit extended precision ALUs
- □ Floating-point arithmetic is not associative!

FP Math is Not Associative!

- □ In symbolic math, (x+y)+z = x+(y+z)
- □ This is not necessarily true for floating-point addition
 - Try x = 10^30, y = -10^30 and z = 1 in the above equation
- When you parallelize computations, you potentially change the order of operations
- Parallel results may not exactly match sequential results
 - This is not specific to GPU or CUDA inherent part of parallel execution

How thread blocks are partitioned

- Thread blocks are partitioned into warps
 - Thread IDs within a warp are consecutive and increasing
 - Warp 0 starts with Thread ID 0
- Partitioning is always the same
 - Thus you can use this knowledge in control flow
 - However, the exact size of warps may change from generation to generation
- However, DO NOT rely on any ordering between warps
 - If there are any dependencies between threads, you must <u>syncthreads()</u> to get correct results

Control Flow Instructions

- □ Main performance concern with branching is divergence
 - Threads within a single warp take different paths
 - Different execution paths must be serialized
- Avoid divergence when branch condition is a function of thread ID
 - Example with divergence:
 - if (threadIdx.x > 2) { }
 - Branch granularity < warp size
 - Example without divergence:
 - if (threadIdx.x / WARP_SIZE > 2) { }
 - Branch granularity is a whole multiple of warp size

Parallel Reduction

- Given an array of values, "reduce" them to a single value in parallel
- Examples
 - sum reduction: sum of all values in the array
 - Max reduction: maximum of all values in the array
- Typically parallel implementation:
 - Recursively halve # threads, add two values per thread
 - Takes log(n) steps for n elements, requires n/2 threads

A Vector Reduction Example

- □ Assume an in-place reduction using shared memory
 - The original vector is in device global memory
 - The shared memory used to hold a partial sum vector
 - Each iteration brings the partial sum vector closer to the final sum
 - The final solution will be in element 0

A simple implementation

- Assume we have already loaded array into
 - shared___float partialSum[]

Vector Reduction with Bank Conflicts

Array elements

