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Optimize Algorithms for the GPU

 Maximize independent parallelism

 Maximize arithmetic intensity (math/bandwidth)

 Sometimes it’s better to recompute than to cache

GPU spends its transistors on ALUs, not memory

 Do more computation on the GPU to avoid costly data 
transfers

Even low parallelism computations can sometimes be 
faster than transferring back and forth to host
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Optimize Memory Access

 Coalesced vs. Non-coalesced = order of magnitude

Global/Local device memory

 Optimize for spatial locality in cached texture memory

 In shared memory, avoid high-degree bank conflicts
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Take Advantage of Shared Memory

 Hundreds of times faster than global memory

 Threads can cooperate via shared memory

 Use one / a few threads to load / compute data shared by all 
threads

 Use it to avoid non-coalesced access: stage loads and stores 
in shared memory to re-order noncoalesceable addressing
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Use Parallelism Efficiently

 Partition your computation to keep the GPU multiprocessors 
equally busy

Many threads, many thread blocks

 Keep resource usage low enough to support multiple active 
thread blocks per multiprocessor

Registers, shared memory



Hardware Implementation
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Hardware Architecture
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CUDA Terminology

 Streaming Processor Array (SPAs) (e.g., 8 TPCs)

Texture Processor Cluster (e.g., 2 SMs + TEX)

 Streaming Multiprocessor (e.g., 8 SPs)

Multi-threaded processor core

Fundamental processing unit for CUDA thread block

 Streaming Processor

Scalar ALU for a single CUDA thread

 Warp: a group of threads executed physically in parallel 
(SIMD)

Half-warp: the first or second half of a warp of threads
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Thread Scheduling/Execution

 Each Thread Blocks is divided in 32-thread 
Warps

This is an implementation decision, not 
part of the CUDA programming model

 Warps are scheduling units in SM

 If 3 blocks are assigned to an SM and each 
Block has 256 threads, how many Warps 
are there in an SM?

Each Block is divided into 256/32 = 8 
Warps

There are 8 * 3 = 24 Warps 

At any point in time, only one of the 24 
Warps will be selected for instruction 
fetch and execution.
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SM Warp Scheduling

 SM hardware implements zero-overhead Warp 
scheduling

Warps whose next instruction has its 
operands ready for consumption are eligible 
for execution

Eligible Warps are selected for execution on 
a prioritized scheduling policy

All threads in a Warp execute the same 
instruction when selected

 4 clock cycles needed to dispatch the same 
instruction for all threads in a Warp in 
G8x/G200

If one global memory access is needed for 
every 4 instructions

A minimal of 13 Warps are needed to fully 
tolerate 200-cycle memory latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96
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Overview

 Optimizing host-device data transfers

 Coalescing global data accesses

 Using shared memory effectively
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Host-Device Data Transfers

 Device memory to host memory bandwidth much lower than 
device memory to device bandwidth

8GB/s peak (PCI-e x16 Gen 2) vs. 141 GB/s peak (GTX 
280)

 Minimize transfers

Intermediate data structures can be allocated, operated 
on, and deallocated without ever copying them to host 
memory

 Group transfers

One large transfer much better than many small ones
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Page-Locked Data Transfers

 cudaMallocHost() allows allocation of page-locked (“pinned”) 
host memory

 Enables highest cudaMemcpy performance

3.2 GB/s on PCI-e x16 Gen1

5.2 GB/s on PCI-e x16 Gen2

 See the “bandwidthTest” CUDA SDK sample

 Use with caution!!

Allocating too much page-locked memory can reduce 
overall system performance

Test your systems and apps to learn their limits
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Asynchronous memory copy

 Asynchronous host-device memory copy for pinned memory 
(allocated with “cudaMallocHost” in C) frees up CPU on all 
CUDA capable devices

 Overlap implemented by using a stream

 Stream = Sequence of operations that execute in order

 Stream API:

cudaMemcpyAsync(dst, src, size, direction, stream);

The default stream is 0

 Example:

cudaMemcpyAsync(dst, src, size,           
cudaMemcpyHostToDevice, 0);

kernel<<<grid, block>>>(…);

cpuFunction();
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Overlap kernel and memory copy

 Concurrent execution of a kernel and a host  device memory 
copy for pinned memory

Devices with compute capability >= 1.1 (G84 and up)

Overlaps kernel execution in one stream with a memory 
copy from another stream

 Example:

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);

kernel<<<grid, block, 0, stream2>>>(…);
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Global and Shared Memory

 Global memory not cached on G8x GPUs

High latency, but launching more threads hides latency

Important to minimize accesses

Coalesce global memory accesses (more later)

 Shared memory is on-chip, very high bandwidth

Low latency

Like a user-managed per-multiprocessor cache

Try to minimize or avoid bank conflicts (more later)
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Texture and Constant Memory

 Texture partition is cached

Uses the texture cache also used for graphics

Optimized for 2D spatial locality

Best performance when threads of a warp read locations 
that are close together in 2D

 Constant memory is cached

4 cycles per address read within a single warp
• Total cost 4 cycles if all threads in a warp read same address

• Total cost 64 cycles if all threads read different addresses
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Global Memory Reads/Writes

 Global memory is not always cached (e.g., on G8x/GT200)

 Highest latency instructions: 400-600 clock cycles

 Likely to be a performance bottleneck

 Optimizations can greatly increase performance
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Coalescing (compute capability 1.0 / 1.1)

 A coordinated read by a half-warp (16 threads)

 A contiguous region of global memory:

64 bytes - each thread reads a word: int, float, …

128 bytes - each thread reads a double-word: int2, float2, 
…

256 bytes – each thread reads a quad-word: int4, float4, 
…

 Additional restrictions:

Starting address for a region must be a multiple of region 
size

The kth thread in a half-warp must access the kth element 
in a block being read

 Exception: not all threads must be participating

Predicated access, divergence within a halfwarp
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Coalescence (1.0/1.1): examples
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Coalescing (compute capability >= 1.2)

 A single memory transaction is issued for a half warp if 
words accessed by all threads lie in the same segment of 
size equal to:

32 bytes if all threads access 8-bit words

64 bytes if all threads access 16-bit words

128 bytes if all threads access 32-bit or 64-bit words

 Achieved for any pattern of addresses requested by the half-warp

including patterns where multiple threads access the same address

 If a half-warp addresses words in n different segments, n 
memory transactions are issued (one for each segment)
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Coalescence (1.2): examples
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Coalescing: Timing Results

 Experiment:

Kernel: read a float, increment, write back

3M floats (12MB)

Times averaged over 10K runs

 12K blocks x 256 threads:

356μs – coalesced

357μs – coalesced, some threads don’t participate

3,494μs – permuted/misaligned thread access
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Uncoalesced Access: float3 Case

 float3 is 12 bytes

 Each thread ends up executing 3 reads

sizeof(float3) != 4, 8, or 16

Half-warp reads three 64B non-contiguous regions
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Uncoalesced float3 Code

__global__ void accessFloat3(float3 *d_in, float3 d_out)

{

int index = blockIdx.x * blockDim.x + threadIdx.x;

float3 a = d_in[index];

a.x += 2;

a.y += 3;

a.z += 4;

d_out[index] = a;

}
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Shared Memory

 ~Hundred times faster than global memory

 Cache data to reduce global memory accesses

 Threads can cooperate via shared memory

 Use it to avoid non-coalesced access

Stage loads and stores in shared memory to re-order 
noncoalesceable addressing
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Coalescing float3 Access
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Coalesced Access: float3 Case

 Use shared memory to allow coalescing

Need sizeof(float3)*(threads/block) bytes of SMEM

Each thread reads 3 scalar floats:

• Offsets: 0, (threads/block), 2*(threads/block)

• These will likely be processed by other threads, so sync

 Processing

Each thread retrieves its float3 from SMEM array

• Cast the SMEM pointer to (float3*)

• Use thread ID as index

Rest of the compute code does not change!
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Coalesced float3 Code

__global__ void accessInt3Shared(float *g_in, 

float *g_out)

{

int dim = blockDim.x;

int index = 3 * blockIdx.x * dim + 

threadIdx.x;

__shared__ float s_data[dim*3];

s_data[threadIdx.x] = g_in[index];

s_data[threadIdx.x+dim] = g_in[index+dim];

s_data[threadIdx.x+2*dim]= g_in[index+dim*2];

__syncthreads();

float3 a = ((float3*)s_data)[threadIdx.x];

a.x += 2;

a.y += 3;

a.z += 4;

((float3*)s_data)[threadIdx.x] = a;

__syncthreads();

g_out[index] = s_data[threadIdx.x];

g_out[index+dim] = s_data[threadIdx.x+dim];

g_out[index+dim*2] = s_data[threadIdx.x+dim*2];

}

Read the 
input
through 
SMEM

Compute 
code 
Is not 
changed

Write the 
result
through 
SMEM

{
{

{
32
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Coalescing: Timing Results

 Experiment:

Kernel: read a float, increment, write back

3M floats (12MB)

Times averaged over 10K runs

 12K blocks x 256 threads reading floats:

356μs – coalesced

357μs – coalesced, some threads don’t participate

3,494μs – permuted/misaligned thread access

 4K blocks x 256 threads reading float3s:

3,302μs – float3 uncoalesced

359μs – float3 coalesced through shared memory
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Parallel Memory Architecture

 Many threads accessing memory

Therefore, memory is divided into banks

Essential to achieve high bandwidth

 Each bank can service one address per cycle

A memory can service as many simultaneous accesses as 
it has banks

 Multiple simultaneous accesses to a bank result in a bank 
conflict

Conflicting accesses are serialized
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Bank Addressing Examples

• No bank conflicts

• Left: linear addressing
stride == 1

• Right: random 1:1
permutation
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Bank Addressing Examples

 Left: 2-way Bank Conflicts

Linear addressing stride == 2

 Right: 8-way Bank Conflicts

Linear addressing stride == 8
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Shared memory bank conflicts

 Shared memory is as fast as registers if there are no bank 
conflicts

 The fast case:

If all threads of a half-warp access different banks, there is 
no bank conflict

If all threads of a half-warp read the identical address, 
there is no bank conflict (broadcast)

 The slow case:

Bank Conflict: multiple threads in the same half-warp 
access the same bank

Must serialize the accesses

Cost = max # of simultaneous accesses to a single bank



Daniele Loiacono

How addresses map to banks on 
G80/GT200

 Bandwidth of each bank is 32 bit per 2 clock cycles

 Successive 32-bit words are assigned to successive banks

 G80/GT200 have 16 banks

So bank = address % 16

Same as the size of a half-warp
• No bank conflicts between different half-warps, only within a single half-

warp
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A common case

 s is the stride

 Threads tid and tid+n access the same banks if:

s*n is a multiple of the number of banks m (m=16)

n is a multiple of m/d, where d is the greatest common 
divisor of m and s

 No bank conflicts if:

size(half_warp) <= m/d = 16 / d
• m/d = 16 (d = 1) -> s must be odd!

__shared__ float shared[32];

float data = shared[BaseIndex + s * tid];
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Matrix transpose example

__global__ void transpose_naive(float *odata, float* idata, int

width, int height)

{

unsigned int xIndex = blockDim.x * blockIdx.x + threadIdx.x;

unsigned int yIndex = blockDim.y * blockIdx.y + threadIdx.y;

if (xIndex < width && yIndex < height)

{

unsigned int index_in = xIndex + width * yIndex;

unsigned int index_out = yIndex + height * xIndex;

odata[index_out] = idata[index_in]; 

}

}
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Uncoalesced transpose

0,0 0,1 0,2

1,0 1,1 1,2
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…
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…

…

…

…

Reads inputs from GMEM Writes outputs to GMEM

…

Stride = 1, coalesced

GMEM
…

Stride = M, uncoalesced

GMEM
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Coalesced Transpose

 Matrix is partitioned into square tiles

 Threadblock (bx,by):

Read the (bx,by) input tile, store into SMEM

Write the SMEM data to (by,bx) output tile

• Transpose the indexing into SMEM

 Thread (tx,ty):

Reads element (tx,ty) from input tile

Writes element (tx,ty) into output tile

 Coalescing is achieved if:

Block/tile dimensions are multiples of 16
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Coalesced Transpose
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SMEM Optimization

 Threads read SMEM with stride = 16

Bank conflicts

 Solution

Allocate an extra column

Read stride = 17

Threads read from consecutive 
banks

0,0 0,1 0,2

1,0 1,1 1,2

0,15

1,15

15,0 15,1 15,2 15,15

…
…

…
…

Reads from SMEM

0,0 0,1 0,2

1,0 1,1 1,2

0,15

1,15

15,0 15,1 15,2 15,15

…

…

…

…

Reads from SMEM
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Optimized transpose

__global__ void transpose(float *odata, float *idata, int width, int height)

{

__shared__ float block[BLOCK_DIM][BLOCK_DIM+1];

// read the matrix tile into shared memory

unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;

unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;

if((xIndex < width) && (yIndex < height))

{

unsigned int index_in = yIndex * width + xIndex;

block[threadIdx.y][threadIdx.x] = idata[index_in];

}

__syncthreads();

// write the transposed matrix tile to global memory

xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;

yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;

if((xIndex < height) && (yIndex < width))

{

unsigned int index_out = yIndex * height + xIndex;

odata[index_out] = block[threadIdx.x][threadIdx.y];

}

}
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A Common Programming Strategy

 Global memory resides in device memory (DRAM) - much 
slower access than shared memory

 So, a profitable way of performing computation on the device 
is to tile data to take advantage of fast shared memory:

Partition data into subsets that fit into shared memory

Handle each data subset with one thread block by:

• Loading the subset from global memory to shared 
memory, using multiple threads to exploit memory-
level parallelism

• Performing the computation on the subset from 
shared memory; each thread can efficiently multi-
pass over any data element

• Copying results from shared memory to global 
memory
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A Common Programming Strategy (Cont.)

 Constant memory also resides in device memory (DRAM) -
much slower access than shared memory

But… cached!

Highly efficient access for read-only data

 Carefully divide data according to access patterns

R/Only  constant memory (very fast if in cache)

R/W shared within Block  shared memory (very fast)

R/W within each thread  registers (very fast)

R/W inputs/results  global memory (very slow)



Execution Configuration
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Occupancy Optimization

 Thread instructions are executed sequentially, so executing 
other warps is the only way to hide latencies and keep the 
hardware busy

 Occupancy = Number of warps running concurrently on a 
multiprocessor divided by maximum number of warps that 
can run concurrently

 Limited by resource usage:

Registers

Shared memory
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Grid/Block Size Heuristics

 # of blocks > # of multiprocessors

So all multiprocessors have at least one block to execute

 # of blocks / # of multiprocessors > 2

Multiple blocks can run concurrently in a multiprocessor

Blocks that aren’t waiting at a __syncthreads() keep the 

hardware busy

Subject to resource availability – registers, shared memory

 # of blocks > 100 to scale to future devices

Blocks executed in pipeline fashion

1000 blocks per grid will scale across multiple generations
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Optimizing threads per block

 Choose threads per block as a multiple of warp size

Avoid wasting computation on under-populated warps

 More threads per block == better memory latency hiding

 But, more threads per block == fewer registers per thread

Kernel invocations can fail if too many registers are used

 Heuristics

Minimum: 64 threads per block
• Only if multiple concurrent blocks

192 or 256 threads a better choice
• Usually still enough regs to compile and invoke successfully

This all depends on your computation, so experiment!
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Occupancy != Performance

 Increasing occupancy does not necessarily increase
performance

BUT…

 Low-occupancy multiprocessors cannot adequately hide 
latency on memory-bound kernels

(It all comes down to arithmetic intensity and available 
parallelism)
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Parameterize Your Application

 Parameterization helps adaptation to different GPUs

 GPUs vary in many ways

# of multiprocessors

Memory bandwidth

Shared memory size

Register file size

Max. threads per block

 You can even make apps self-tuning 

“Experiment” mode discovers and saves optimal
configuration



Instructions and Flow Control
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Instruction optimization

 Instruction cycles (per warp) = sum of

Operand read cycles

Instruction execution cycles

Result update cycles

 Therefore instruction throughput depends on

Nominal instruction throughput

Memory latency

Memory bandwidth

 “Cycle” refers to the multiprocessor clock rate

1.35 GHz on the Tesla C870, for example
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Maximizing Instruction Throughput

 Maximize use of high-bandwidth memory

Maximize use of shared memory

Minimize accesses to global memory

Maximize coalescing of global memory accesses

 Optimize performance by overlapping memory accesses with
HW computation

High arithmetic intensity programs
• i.e. high ratio of math to memory transactions

Many concurrent threads
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Arithmetic Instruction Throughput

 Int and float add, shift, min, max and float mul, mad: 4 cycles
per warp

int multiply (*) is by default 32-bit
• requires multiple cycles / warp

Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit 
int multiply

 Integer divide and modulo are more expensive

Compiler will convert literal power-of-2 divides to shifts
• It may miss some cases

Be explicit in cases where compiler can’t tell that divisor is 
a power of 2!

Useful trick: foo % n == foo & (n-1) if n is a power of 2
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Runtime Math Library

 There are two types of runtime math operations

__func(): direct mapping to hardware ISA
• Fast but lower accuracy (see prog. guide for details)

• Examples: __sin(x), __exp(x), __pow(x,y)

func() : compile to multiple instructions
• Slower but higher accuracy (5 ulp or less)

• Examples: sin(x), exp(x), pow(x,y)

 The -use_fast_math compiler option forces every func() to
compile to __func()
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GPU results may not match CPU

 Many variables: hardware, compiler, optimization settings

 CPU operations aren’t strictly limited to 0.5 ulp

Sequences of operations can be more accurate due to 80-
bit extended precision ALUs

 Floating-point arithmetic is not associative!
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FP Math is Not Associative!

 In symbolic math, (x+y)+z == x+(y+z)

 This is not necessarily true for floating-point addition

Try x = 10^30, y = -10^30 and z = 1 in the above 
equation

 When you parallelize computations, you potentially change 
the order of operations

 Parallel results may not exactly match sequential results

This is not specific to GPU or CUDA – inherent part of 
parallel execution
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How thread blocks are partitioned

 Thread blocks are partitioned into warps
Thread IDs within a warp are consecutive and increasing

Warp 0 starts with Thread ID 0

 Partitioning is always the same
Thus you can use this knowledge in control flow 

However, the exact size of warps may change from 
generation to generation

 However, DO NOT rely on any ordering between 
warps

If there are any dependencies between threads, you 
must __syncthreads() to get correct results
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Control Flow Instructions

 Main performance concern with branching is divergence

Threads within a single warp take different paths

Different execution paths must be serialized

 Avoid divergence when branch condition is a function of
thread ID

Example with divergence:
• if (threadIdx.x > 2) { }

• Branch granularity < warp size

Example without divergence:
• if (threadIdx.x / WARP_SIZE > 2) { }

• Branch granularity is a whole multiple of warp size
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Parallel Reduction

 Given an array of values, “reduce” them to a single value in 
parallel

 Examples 

sum reduction: sum of all values in the array

Max reduction: maximum of all values in the array

 Typically parallel implementation:

Recursively halve # threads, add two values per thread

Takes log(n) steps for n elements, requires n/2 threads
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A Vector Reduction Example

 Assume an in-place reduction using shared memory

The original vector is in device global memory

The shared memory used to hold a partial sum vector

Each iteration brings the partial sum vector closer to the 
final sum

The final solution will be in element 0
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A simple implementation

 Assume we have already loaded array into

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (unsigned int stride = 1; 

stride < blockDim.x;  stride *= 2) 

{

__syncthreads();

if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];

}
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Vector Reduction with Bank Conflicts
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