
Daniele Loiacono

OpenMP
Algoritmi e Calcolo Parallelo

Daniele Loiacono

References

 Useful references

Using OpenMP: Portable Shared Memory Parallel Programming,
Barbara Chapman, Gabriele Jost and Ruud van der Pas

OpenMP.org
http://openmp.org/

OpenMP Tutorial
https://computing.llnl.gov/tutorials/openMP/

Introduction

Daniele Loiacono

What is OpenMP?

 OpenMP (Open Multi-Processing) is an API for multi-platform
shared memory multiprocessing programming

Supports C/C++ and Fortran

Available on Unix and on MS Windows

Provides compiler directives, library routines, and
environment variables

 OpenMP is a portable and scalable for platforms ranging from
the desktop to the supercomputer

 An application built with the hybrid model of parallel
programming can run on a computer cluster using both
OpenMP and Message Passing Interface (MPI)

Daniele Loiacono

History of OpenMP

 The OpenMP Architecture Review Board (ARB) published its
first API specifications, OpenMP for Fortran 1.0, in October
1997. October the following year they released the C/C++
standard.

 2000 saw version 2.0 of the Fortran specifications with
version 2.0 of the C/C++ specifications being released in
2002.

 Version 2.5 is a combined C/C++/Fortran specification that
was released in 2005.

 Version 3.0, released in May, 2008, is the current version of
the API specifications. Included in the new features in 3.0 is
the concept of tasks and the task construct. These new
features are summarized in Appendix F of the OpenMP 3.0
specifications.

Daniele Loiacono

Goals of OpenMP

 Standardization

Provide a standard among a variety of shared memory
architectures/platforms

 Lean and Mean

Establish a simple and limited set of directives for programming
shared memory machines (significant parallelism can be
implemented by using just 3 or 4 directives)

 Ease of Use

Provide capability to incrementally parallelize a serial program
(unlike message-passing libraries)

Provide the capability to implement both coarse-grain and fine-grain
parallelism

 Portability

Supports Fortran (77, 90, and 95), C, and C++

Daniele Loiacono

How does it work?

 OpenMP is an implementation of multithreading

A master thread "forks" a specified number of slave
threads

Tasks are divided among slaves

Slaves run concurrently as the runtime environment
allocating threads to different processors

Daniele Loiacono

Overview of OpenMP

 A compiler directive in C/C++ is called a pragma (pragmatic
information). It is a preprocessor directive, thus it is declared with a
hash (#). Compiler directives specific to OpenMP in C/C++ are written
in codes as follows:

#pragma omp <rest of pragma>

Daniele Loiacono

OpenMP programming model

 Based on compiler directives

 Nested Parallelism Support

API allows parallel constructs inside other parallel
constructs

 Dynamic Threads

API allows to dynamically change the number of threads which may
used to execute different parallel regions

 I/O

OpenMP specifies nothing about parallel I/O

It is up to the programmer to insure that I/O is conducted correctly
within the context of a multi-threaded program

 Memory consistency

Threads can "cache" their data and are not required to maintain
exact consistency with real memory all of the time

When it is critical that all threads view a shared variable identically,
the programmer is responsible for insuring that the variable is
FLUSHed by all threads as needed

Basic Elements

Daniele Loiacono

Hello World in OpenMP

#include <omp.h>

#include <iostream>

using namespace std;

int main()

{

#pragma omp parallel num_threads(3)

{

cout << "Hello World“ << endl;

}

}

$./hello

Hello World

Hello World

Hello World

Daniele Loiacono

OpenMP Directives

 A valid OpenMP directive must appear after the #pragma omp

 name is the name of OpenMP directive

 The directive name can be followed by optional clauses (in any order)

 An OpenMP directive precedes the structured block which is enclosed by
the directive itself

 Example

#pragma omp name [clause, ...]

{

…

}

#pragma omp parallel num_threads(3)

{

cout << "Hello World\n";

}

Daniele Loiacono

Directive Scoping

 Static (Lexical) Extent

The code textually enclosed between the beginning and the
end of a structured block following a directive

The static extent of a directives does not span multiple
routines or code files

 Orphaned Directive

An OpenMP directive that appears independently from
another enclosing directive. It exists outside of another
directive's static (lexical) extent.

Will span routines and possibly code files

 Dynamic Extent

The dynamic extent of a directive includes both its static
(lexical) extent and the extents of its orphaned directives.

Daniele Loiacono

Directive Scoping: example

void f(){

#pragma omp name2 [clause, ...]

{

…

}

}

int main(){

#pragma omp name1 [clause, ...]

{

f();

…

}

}

Daniele Loiacono

Directive Scoping: example

void f(){

#pragma omp name2 [clause, ...]

{

…

}

}

int main(){

#pragma omp name1 [clause, ...]

{

f();

…

}

}

Static extent of name1

Daniele Loiacono

Directive Scoping: example

void f(){

#pragma omp name2 [clause, ...]

{

…

}

}

int main(){

#pragma omp name1 [clause, ...]

{

f();

…

}

}

Dynamic extent of name1

Orphaned directive

Daniele Loiacono

parallel directive

#pragma omp parallel [if (exp) | num_threads (exp)| …]

{

}

 When a thread reaches a parallel directive, it creates a

team of threads and becomes the master of the team. The
master is a member of that team and has thread number 0
within that team.

 Starting from the beginning of this parallel region, the code is
duplicated and all threads will execute that code.

 There is an implied barrier at the end of a parallel section.
Only the master thread continues execution past this point.

 If any thread terminates within a parallel region, all threads in
the team will terminate, and the work done up until that point
is undefined.

 Threads are numbered from 0 (master thread) to N-1

Daniele Loiacono

parallel directive: how many threads?

 The number of threads in a parallel region is determined by
the following factors, in order of precedence:

Evaluation of the if clause

Setting of the num_threads clause

Use of the omp_set_num_threads() library function

Setting of the OMP_NUM_THREADS environment variable

Implementation default, e.g., the number of CPUs on a
node.

 When present, the if clause must evaluate to true (i.e., non-

zero integer) in order for a team of threads to be created;
otherwise, the region is executed serially by the master
thread.

Run-Time Library Routines

Daniele Loiacono

Overview

 The OpenMP standard defines an API for library calls that
perform a variety of functions:

Query the number of threads/processors, set number of
threads to use

General purpose locking routines (semaphores)

Portable wall clock timing routines

 Set execution environment functions: nested parallelism,
dynamic adjustment of threads.

 It may be necessary to specify the include file "omp.h".

 For the Lock routines/functions:

The lock variable must be accessed only through the
locking routines

The lock variable must have type omp_lock_t or type
omp_nest_lock_t, depending on the function being used.

Daniele Loiacono

Run-Time Routines

 void omp_set_num_threads(int num_threads)

Sets the number of threads that will be used in the next
parallel region.

num_threads must be a postive integer

This routine can only be called from the serial portions of
the code

 int omp_get_num_threads(void)

Returns the number of threads that are currently in the
team executing the parallel region from which it is called.

 int omp_get_thread_num(void)

Returns the thread number of the thread, within the team,
making this call. This number will be between 0 and
OMP_GET_NUM_THREADS-1. The master thread of the
team is thread 0

Daniele Loiacono

A better Hello World in OpenMP

#include <omp.h>

#include <iostream>

using namespace std;

int main()

{

#pragma omp parallel num_threads(3)

{

cout << "Hello World. I am thread “;

cout << omp_get_thread_num() << endl;

}

}

$./hello

Hello World. I am thread 0

Hello World. I am thread 2

Hello World. I am thread 1

Data Scope Attribute Clauses

Daniele Loiacono

Variables Scope in OpenMP

 OpenMP is based upon the shared memory programming model, most
variables are shared by default

 The OpenMP Data Scope Attribute Clauses are used to explicitly define
how variables should be scoped. They include:

private

shared

default

reduction

 Data Scope Attribute Clauses are used in conjunction with several
directives to

define how and which data variables in the serial section of the
program are transferred to the parallel sections

define which variables will be visible to all threads in the parallel
sections and which variables will be privately allocated to all threads

 Data Scope Attribute Clauses are effective only within their
lexical/static extent.

Daniele Loiacono

private clause

 private (list)

The private clause declares variables in its list to be

private to each thread

 private variables behave as follows:

a new object of the same type is declared once for each
thread in the team

all references to the original object are replaced with
references to the new object

variables should be assumed to be uninitialized for each
thread

Daniele Loiacono

shared clause

 shared (list)

The shared clause declares variables in its list to be shared

among all threads in the team.

 A shared variable exists in only one memory location and all

threads can read or write to that address.

 It is the programmer's responsibility to ensure that multiple
threads properly access shared variables

Daniele Loiacono

default clause

 default (shared | none)

The default scope of all variables is either set to shared or
none

 The default clause allows the user to specify a default scope

for all variables in the lexical extent of any parallel region

 Specific variables can be exempted from the default using
specific clauses (e.g., private, shared, etc.)

 Using none as a default requires that the programmer
explicitly scope all variables.

Daniele Loiacono

reduction clause

 reduction (operator: list)

performs a reduction on the variables that appear in its list

operator defines the reduction operation

 A private copy for each list variable is created for each thread

 At the end of the reduction, the reduction variable is applied
to all private copies of the shared variable, and the final result
is written to the global shared variable

Daniele Loiacono

A simple example

#include <omp.h>

#include <iostream>

using namespace std;

int main()

{

int tid;

#pragma omp parallel num_threads(3) private(tid)

{

tid = omp_get_thread_num();

cout << "Hello World. I am thread " << tid << endl;

}

}
$./hello

Hello World. I am thread 0

Hello World. I am thread 2

Hello World. I am thread 1

Work-Sharing

Daniele Loiacono

for: shares iterations of a
loop across the team (data
parallelism)

sections: breaks work into separate,
discrete sections, each executed by
a thread (functional parallelism)

single: serializes a
section of code.

Work-sharing constructs

 Divide the execution of the enclosed code region among the members
of the team that encounter it

A work-sharing construct must be enclosed dynamically within a parallel

region in order for the directive to execute in parallel

Work-sharing constructs do not launch new threads

There is no implied barrier upon entry to a work-sharing construct,
however there is an implied barrier at the end of a work sharing construct

Daniele Loiacono

for directive

 #pragma omp for [clause ...]

for_loop

 Most important clauses include:

schedule (type [,chunk]): edescribes how iterations of the loop

are divided among the threads in the team (default schedule is
implementation dependent)

nowait: if specified, then threads do not synchronize at the end of
the parallel loop.

The data-scope clauses (private, shared, reduction)

 Most typical schedules are:

static: loop iterations are divided into blocks of size chunk and

then statically assigned to threads. If chunk is not specified, the
iterations are evenly (if possible) divided contiguously among the
threads.

dynamic: loop iterations are divided into blocks of size chunk, and

dynamically scheduled among the threads; when a thread finishes
one chunk, it is dynamically assigned another. The default chunk
size is 1.

Daniele Loiacono

for directive: example

#include <omp.h>

#include <iostream>

#define CHUNKSIZE 100

#define N 1000

using namespace std;

int main(){

float a[N], b[N], c[N];

#pragma omp parallel shared(a,b,c)

{

#pragma omp for schedule(dynamic, CHUNKSIZE) nowait

for (int i=0; i < N; i++)

c[i] = a[i] + b[i];

}// end of parallel region

}

Daniele Loiacono

sections directive

 #pragma omp sections [clause ...]

{

#pragma omp section

{

…

}

#pragma omp section

{

…

}

}

specifies that the enclosed section(s) of code are to be divided
among the threads in the team

Each section is executed once by a thread in the team. Different

sections may be executed by different threads. It is possible that for
a thread to execute more than one section.

private

reduction

nowait

etc.

Daniele Loiacono

sections directive: example

#include <omp.h>

#include <iostream>

…

int main(){

float a[N], b[N], c[N], d[N];

#pragma omp parallel shared(a,b,c,d)

{

#pragma omp sections nowait

{

#pragma omp section

for (i=0; i < N; i++)

c[i] = a[i] + b[i];

#pragma omp section

for (i=0; i < N; i++)

d[i] = a[i] * b[i];

} // end of sections

} // end of parallel region

}

Daniele Loiacono

single directive

 #pragma omp single [private | nowait | …]

{

…

}

#pragma omp single [private | nowait | …

Synchronization

Daniele Loiacono

critical directive

 #pragma omp critical [name]

{

…

}

 The critical directive specifies a region of code that must be

executed by only one thread at a time

 If a thread is currently executing inside a critical region and
another thread reaches that critical region and attempts to

execute it, it will block until the first thread exits that
critical region.

 The optional name enables multiple different critical regions:

names act as global identifiers: different critical regions

with the same name are treated as the same region

all critical sections which are unnamed, are treated as

the same section

Daniele Loiacono

critical directive: example

#include <omp.h>

int main()

{

int x;

x = 0;

#pragma omp parallel shared(x)

{

#pragma omp critical

x = x + 1;

} // end of parallel region

}

Daniele Loiacono

barrier directive

 #pragma omp barrier

The barrier directive synchronizes all threads in the

team.

When a barrier directive is reached, a thread will wait at

that point until all other threads have reached that barrier.
All threads then resume executing in parallel the code that
follows the barrier.

All threads in a team (or none) must execute the barrier

region.

