
Daniele Loiacono

Mining Data Streams
Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)



Daniele Loiacono

References

Jiawei Han and Micheline Kamber, "Data 
Mining: Concepts and Techniques", The 
Morgan Kaufmann Series in Data 
Management Systems (Second Edition)

Chapter 8



Data Streams



Daniele Loiacono

4DBMS versus DSMS

Persistent relations
One-time queries
Random access
“Unbounded” disk store
Only current state matters
No real-time services
Relatively low update rate
Data at any granularity
Assume precise data
Access plan determined by query 

processor, physical DB design

Transient streams 
Continuous queries
Sequential access
Bounded main memory
Historical data is important
Real-time requirements
Possibly multi-GB arrival rate
Data at fine granularity
Data stale/imprecise
Unpredictable/variable data 

arrival and characteristics

Ack. From Motwani’s PODS tutorial slides
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5Examples

Telecommunication calling records
Business: credit card transaction flows
Network monitoring and traffic engineering
Financial market: stock exchange
Engineering & industrial processes: power supply & 
manufacturing
Sensor, monitoring & surveillance: video streams, RFIDs
Security monitoring
Web logs and Web page click streams
Massive data sets (even saved but random access is too 
expensive)
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6Stream Query Processing

Scratch Space
(Main memory and/or Disk)

User/Applications

Continuous Query

Stream Query
Processor

Stream Query
Processor

Results

Multiple streams
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7Challenges

Multiple, continuous, rapid, time-varying, ordered streams
Main memory computations
Queries are often continuous

Evaluated continuously as stream data arrives
Answer updated over time

Queries are often complex
Beyond element-at-a-time processing
Beyond stream-at-a-time processing
Beyond relational queries (scientific, data mining, OLAP)

Multi-level/multi-dimensional processing and data mining
Most stream data are at low-level or multi-dimensional in 
nature
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8Processing Stream Queries

Query types
One-time query vs. continuous query (being evaluated 
continuously as stream continues to arrive)
Predefined query vs. ad-hoc query (issued on-line)

Unbounded memory requirements
For real-time response, main memory algorithm should be used
Memory requirement is unbounded if one will join future tuples

Approximate query answering
With bounded memory, it is not always possible 
to produce exact answers
High-quality approximate answers are desired
Data reduction and synopsis construction methods:
Sketches, random sampling, histograms, wavelets, etc.
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9Stream Data Mining vs. Stream 
Querying

Stream mining is a more challenging task in many cases
It shares most of the difficulties with stream querying
But often requires less “precision”, e.g., no join, grouping, 
sorting
Patterns are hidden and more general than querying
It may require exploratory analysis, not necessarily 
continuous queries

Stream data mining tasks
Multi-dimensional on-line analysis of streams
Mining outliers and unusual patterns in stream data
Clustering data streams 
Classification of stream data
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10Multi-Dimensional Stream Analysis: 
Examples

Analysis of Web click streams
Raw data at low levels: seconds, web page addresses, 
user IP addresses, …
Analysts want: changes, trends, unusual patterns, at 
reasonable levels of details
E.g., Average clicking traffic in North America on sports in 
the last 15 minutes is 40% higher than that in the last 24 
hours.”

Analysis of power consumption streams
Raw data: power consumption flow for every household, 
every minute 
Patterns one may find: average hourly power 
consumption surges up 30% for manufacturing companies
in Chicago in the last 2 hours today than that of the same 
day a week ago



Processing Data
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12What the Methodologies for 
Stream Data Processing?

Major challenges
Keep track of a large universe, 
e.g., pairs of IP address, not ages

Methodology
Synopses (trade-off between accuracy and storage)
Use synopsis data structure, much smaller (O(logk N) space) 
than their base data set (O(N) space)
Compute an approximate answer within a small error range 
(factor ε of the actual answer)

Major methods 
Random sampling
Histograms
Sliding windows
Multi-resolution model
Sketches
Radomized algorithms
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13Stream Data Processing Methods (1)

Random sampling (but without knowing the total length in advance)
Reservoir sampling: maintain a set of s candidates in the reservoir, 
which form a true random sample of the element seen so far in the 
stream.  As the data stream flow, every new element has a certain 
probability (s/N) of replacing an old element in the reservoir.

Sliding windows
Make decisions based only on recent data of sliding window size w
An element arriving at time t expires at time t + w

Histograms
Approximate the frequency distribution of element values in a stream
Partition data into a set of contiguous buckets
Equal-width (equal value range for buckets) vs. V-optimal (minimizing 
frequency variance within each bucket)

Multi-resolution models
Popular models: balanced binary trees, micro-clusters, and wavelets
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14Stream Data Processing Methods (2)

Sketches
Histograms and wavelets require multi-passes over the 
data but sketches can operate in a single pass
Frequency moments of a stream A = {a1, …, aN}, Fk:

where v: the universe or domain size, mi: the frequency 
of i in the sequence

• F0 is the number of distinct elements
• F1 is the number of elements
• F2 is known as repeat rate or Gini’s index of homogeneity

Given N elts and v values, sketches can approximate F0, 
F1, F2 in O(log v + log N) space
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15Stream Data Processing Methods (3)

Randomized algorithms
Monte Carlo algorithm: bound on running time but may 
not return correct result

Chebyshev’s inequality: Let X be a random variable with 
mean μ and standard deviation σ

Chernoff bound:
• Let X be the sum of independent Poisson trials X1, …, 

Xn, δ in (0, 1]
• The probability decreases expoentially as we move 

from the mean
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17A Stream Cube Architecture

A tilted time frame
Different time granularities: 
second, minute, quarter, hour, day, week, …

Critical layers
Minimum interest layer (m-layer)
Observation layer (o-layer)
User: watches at o-layer and occasionally needs to drill-
down down to m-layer

Partial materialization of stream cubes
Full materialization: too space and time consuming
No materialization:  slow response at query time
Partial materialization: what do we mean “partial”?
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18A Titled Time Model

Natural tilted time frame:
Example: Minimal: quarter, then 4 quarters → 1 hour, 24 
hours → day, …

Logarithmic tilted time frame:
Example: Minimal: 1 minute, then 1, 2, 4, 8, 16, 32, …

Time
t8t 4t 2t t16t32t64t

4 qtrs24 hours31 days12 months
time
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19Two Critical Layers in the Stream 
Cube

(*, theme, quarter)

(user-group, URL-group, minute)

m-layer (minimal interest)

(individual-user, URL, second)
(primitive) stream data layer

o-layer (observation)
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20On-Line Partial Materialization vs. 
OLAP Processing

On-line materialization 
Materialization takes precious space and time

• Only incremental materialization (with tilted time frame) 
Only materialize “cuboids” of the critical layers?

• Online computation may take too much time
Preferred solution:

• popular-path approach: Materializing those along the popular 
drilling paths

• H-tree structure:  Such cuboids can be computed and stored 
efficiently using the H-tree structure

Online aggregation vs. query-based computation
Online computing while streaming: 
aggregating stream cubes
Query-based computation: 
using computed cuboids



Frequent patterns
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22Frequent Patterns in Data Streams

Frequent pattern mining is valuable in stream applications
e.g., network intrusion mining

Many existing algorithms require to scan the dataset more 
than once. 
Multiple scans are not feasible in data streams, where there 
are two main approaches:

Focus on a set of predefined set of items
Provide an approximate answer

• E.g., exploiting the Lossy Counting Algorithm
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Predefined set of items

The algorithm keeps track of a predefined set of items
It requires a single scan of data to compute the exact 
frequency of each item
How to choose the predefined set of items?

Focus on a set of “interesting” items
Focus on a set of item known to be frequent in the past

This approach cannot be often used in practice:
A set of “interesting” items might not be available
Choosing items on the basis of past information does not 
account for future changes 
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24Mining Approximate Frequent 
Patterns: Lossy Counting

Approximate answers are often enough (e.g., trend/pattern 
analysis)
Example: a router is interested in all flows:

whose frequency is at least 1% (σ) of the entire traffic 
stream seen so far 
and feels that 1/10 of σ (ε = 0.1%) error is comfortable 

How to mine frequent patterns with good approximation?
Lossy Counting Algorithm is able to compute the frequency 
of items with an error not bigger than ε
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25Lossy Counting for Frequent Items 
(1)

Divide Stream into ‘Buckets’ (bucket size is 1/ ε = 1000)

Bucket 1 Bucket 2 Bucket 3
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26Lossy Counting for Frequent Items 
(2)

Empty
(summary) +

At bucket boundary, decrease all counters by 1

Bucket 1
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27Lossy Counting for Frequent Items 
(1)

+

At bucket boundary, decrease all counters by 1

Bucket 2
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28Lossy Counting for Frequent Items 
(4)

Inputs
support threshold: σ
error threshold: ε
data stream of length N 

Output: items with frequency counts exceeding (σ – ε) N
How much do we underestimate frequency?

Not more than one element is “lost” for each buket
The number of buckets is N/w = εN
Frequency count underestimated by at most εN 

Approximation guarantee
No false negatives
False positives have true frequency count at least (σ–ε)N
The space requirement is limited to 1/ε log(εN)



Daniele Loiacono

Lossy Counting For Frequent 
Itemsets

When applied to find frequent itemsets, the list of 
frequencies grows exponentially
To deal with this problem, as many buckets as possible are 
loaded in main memory at one time 
Example: load 3 buckets into main memory

29

Bucket 1 Bucket 2 Bucket 3
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Lossy Counting For Frequent 
Itemsets (2)

With large number of buckets in memory we delete more 
itemsets

30

2

2

1

2

1
1

1

summary data 3 bucket data
in memory

4
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2
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summary data

Itemset (    ) 
is deleted



Daniele Loiacono

31Lossy Counting For Frequent 
Itemsets: Pruning Itemsets 

If we find itemset (      ) is not frequent itemset,
Then we needn’t consider its superset

3 bucket data
in memory

1

+

summary data

2
2

1

1
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32Summary of Lossy Counting

Strength
A simple idea
Can be extended to frequent itemsets 

Weakness:
Space Bound is not good
For frequent itemsets, they do scan each record many times
The output is based on all previous data. But sometimes, we are 
only interested in recent data



Classification
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34Classification in Data Streams
What are the issues?

It is impossible to store the whole data set, as traditional 
classification algorithms require
It is usually not possible to perform multiple scans of the 
input data
Data streams are time-varying! There is concept drift.

Approaches
Hoeffding Trees
Very Fast Decision Tree
Concept-adapting Very Fast Decision Tree
Ensemble of Classifiers
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35Hoeffding Tree

Initially introduced to analyze click-streams
With high probability, lead to the same decision tree of typical
algorithms
Only uses small sample to choose optimal splitting attribute
It is based on Hoeffding Bound principle

r: random variable representing the attribute selection 
method (e.g. information gain)
R: range of r
n: # independent observations
Mean of r is at least ravg – ε, with probability 1 – δ

The bound is used to determine, with high probability the smallest 
number N of examples needed at a node to select the splitting 
attribute 

n
R

2
)/1ln(2 δε =
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36Hoeffding Tree Algorithm

Hoeffding Tree Input
S: sequence of examples
X: attributes
G( ): evaluation function
δ: desired accuracy

for each example in S
retrieve G(Xa) and G(Xb)   
if ( G(Xa) – G(Xb) > ε )
split on Xa
recurse to next node
break

Memory to save to counts elements is O(ldvc), where l is the depth, 
d is the number of attributes, v is the maximum number of 
attributes, c is the number of classes

Xa and Xa are the 
atributes with highest 

values of G(), while ε is 
computed with the 
Hoeffding bound
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37Example

yes no

Packets > 10

Protocol = http

Protocol = ftp

yes

yes no

Packets > 10

Bytes > 60K

Protocol = http

Data Stream

Data Stream
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38Hoeffding Tree: 
Strengths and Weaknesses

Strengths 
Scales better than traditional methods

Sublinear with sampling
Very small memory utilization

Incremental
Make class predictions in parallel
New examples are added as they come

Weaknesses
Could spend a lot of time with ties
Memory used with tree expansion
Number of candidate attributes
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39VFDT (Very Fast Decision Tree)

Modifications to Hoeffding Tree
Near-ties broken more aggressively
G computed every nmin
Deactivates certain leaves to save memory
Poor attributes dropped
Initialize with traditional learner (helps learning curve)

Compare to Hoeffding Tree: Better time and memory

Compare to traditional decision tree
Similar accuracy
Better runtime with 1.61 million examples

• 21 minutes for VFDT
• 24 hours for C4.5

Still does not handle concept drift
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40CVFDT (Concept-adapting VFDT)

Concept Drift 
Time-changing data streams
Incorporate new and eliminate old

CVFDT
Increments count with new example
Decrement old example

• Sliding window
• Nodes assigned monotonically increasing IDs

Grows alternate subtrees
When alternate more accurate, then replace old
O(w) better runtime than VFDT-window
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41Ensemble of Classifiers Algorithm

H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining Concept-
Drifting Data Streams using Ensemble Classifiers”, KDD'03.

Method (derived from the ensemble idea in classification)

train K classifiers from K chunks
for each subsequent chunk

train a new classifier
test other classifiers against the chunk
assign weight to each classifier
select top K classifiers



Clustering
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43Clustering Evolving Data Streams
What methodologies?

Compute and store summaries of past data
Apply a divide-and-conquer strategy
Incremental clustering of incoming data streams
Perform microclustering as well as macroclustering anlysis
Explore multiple time granularity for the analysis of cluster 
evolution
Divide stream clustering into on-line and off-line processes
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44Clustering Data Streams

Base on the k-median method
Data stream points from metric space
Find k clusters in the stream s.t. the sum of distances 
from data points to their closest center is minimized

Constant factor approximation algorithm
In small space, a simple two step algorithm:

1.For each set of M records, Si, 
find O(k) centers in  S1, …, Sl
Local clustering: Assign each point in Si to its closest 
center

2.Let S’ be centers for S1, …, Sl with each 
center weighted by number of points assigned to it
Cluster S’ to find k centers
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45Hierarchical Clustering Tree

data points

level-i medians

level-(i+1) medians
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46Hierarchical Tree and Drawbacks

Method
Maintain at most m level-i medians
On seeing m of them, generate O(k) level-(i+1) medians 
of weight equal to the sum of the weights of the 
intermediate medians assigned to them

Drawbacks
Low quality for evolving data streams 
(register only k centers)
Limited functionality in discovering and exploring clusters 
over different portions of the stream over time
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47Clustering for Mining Stream 
Dynamics

Network intrusion detection: one example 
Detect bursts of activities or abrupt changes in real time—
by on-line clustering 

The methodology 
by C. Agarwal, J. Han, J. Wang, P.S. Yu, VLDB’03

Tilted time frame work: 
o.w. dynamic changes cannot be found
Micro-clustering: better quality than k-means/k-median

• incremental, online processing and maintenance)

Two stages: micro-clustering and macro-clustering
With limited “overhead” to achieve high efficiency, 
scalability, quality of results and power of 
evolution/change detection
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48CluStream: A Framework 
for Clustering Evolving Data Streams

Design goal
High quality for clustering evolving data streams with 
greater functionality
While keep the stream mining requirement in mind

• One-pass over the original stream data
• Limited space usage and high efficiency

CluStream: A framework for clustering evolving data streams
Divide the clustering process into online and  offline 
components
Online component: periodically stores summary statistics 
about the stream data
Offline component: answers various user questions based 
on the stored summary statistics



Daniele Loiacono

49The CluStream Framework

Micro-cluster
Statistical information about data locality
Temporal extension of the cluster-feature vector

• Multi-dimensional points X1 … Xk …
with time stamps T1 … Tk …

• Each point contains d dimensions, i.e., X = (x1 … xd)
• A micro-cluster for n points is defined as a (2.d + 3) tuple

Pyramidal time frame
Decide at what moments the snapshots of the statistical 
information are stored away on disk

( )nCFCFCFCF ttxx ,1,2,1,2
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50CluStream: Pyramidal Time Frame

Snapshots of a set of micro-clusters are stored following the 
pyramidal pattern

They are stored at differing levels of granularity depending 
on the recency

Snapshots are classified into different orders 
varying from 1 to log(T)

The i-th order snapshots occur at intervals 
of αi where α ≥ 1
Only the last (α + 1) snapshots are stored 
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51CluStream: Clustering On-line 
Streams

Online micro-cluster maintenance

Initial creation of q micro-clusters 
• q is usually significantly larger than 

the number of natural clusters

Online incremental update of micro-clusters
• If new point is within max-boundary, insert into the micro-cluster

• O.w., create a new cluster

• May delete obsolete micro-cluster or merge two closest ones

Query-based macro-clustering

Based on a user-specified time-horizon h and the number of 
macro-clusters K, compute macroclusters using the k-means 
algorithm 



Daniele Loiacono

52Stream Data Mining: 
What are the Research Issues?

Mining sequential patterns in data streams
Mining partial periodicity in data streams
Mining notable gradients in data streams
Mining outliers and unusual patterns in data streams

Stream clustering
Multi-dimensional clustering analysis?
Cluster not confined to 2-D metric space, how to incorporate 
other features, especially non-numerical properties
Stream clustering with other clustering approaches?
Constraint-based cluster analysis with data streams?



Summary
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54Summary: Stream Data Mining

Stream Data Mining is a rich and on-going research field

Current research focus in database community: 
DSMS system architecture
Continuous query processing
Supporting mechanisms 

Stream data mining and stream OLAP analysis 
Powerful tools for finding general and unusual patterns
Effectiveness, efficiency and scalability: 
lots of open problems

Philosophy on stream data analysis and mining
A multi-dimensional stream analysis framework
Time is a special dimension: Tilted time frame 
What to compute and what to save?—Critical layers
Partial materialization and precomputation
Mining dynamics of stream data 
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55Projects on DSMS 
(Data Stream Management System) 

Research projects and system prototypes
STREAM (Stanford): A general-purpose DSMS 
Cougar (Cornell): sensors 
Aurora (Brown/MIT): sensor monitoring, dataflow
Hancock (AT&T): telecom streams
Niagara (OGI/Wisconsin): Internet XML databases
OpenCQ (Georgia Tech):  triggers, incr. view maintenance
Tapestry (Xerox): pub/sub content-based filtering
Telegraph (Berkeley): adaptive engine for sensors
Tradebot (www.tradebot.com): stock tickers & streams
Tribeca (Bellcore): network monitoring
MAIDS (UIUC/NCSA): Mining Alarming Incidents in Data 
Streams 
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