
Daniele Loiacono

Mining Data Streams
Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)

Daniele Loiacono

References

Jiawei Han and Micheline Kamber, "Data
Mining: Concepts and Techniques", The
Morgan Kaufmann Series in Data
Management Systems (Second Edition)

Chapter 8

Data Streams

Daniele Loiacono

4DBMS versus DSMS

Persistent relations
One-time queries
Random access
“Unbounded” disk store
Only current state matters
No real-time services
Relatively low update rate
Data at any granularity
Assume precise data
Access plan determined by query

processor, physical DB design

Transient streams
Continuous queries
Sequential access
Bounded main memory
Historical data is important
Real-time requirements
Possibly multi-GB arrival rate
Data at fine granularity
Data stale/imprecise
Unpredictable/variable data

arrival and characteristics

Ack. From Motwani’s PODS tutorial slides

Daniele Loiacono

5Examples

Telecommunication calling records
Business: credit card transaction flows
Network monitoring and traffic engineering
Financial market: stock exchange
Engineering & industrial processes: power supply &
manufacturing
Sensor, monitoring & surveillance: video streams, RFIDs
Security monitoring
Web logs and Web page click streams
Massive data sets (even saved but random access is too
expensive)

Daniele Loiacono

6Stream Query Processing

Scratch Space
(Main memory and/or Disk)

User/Applications

Continuous Query

Stream Query
Processor

Stream Query
Processor

Results

Multiple streams

Daniele Loiacono

7Challenges

Multiple, continuous, rapid, time-varying, ordered streams
Main memory computations
Queries are often continuous

Evaluated continuously as stream data arrives
Answer updated over time

Queries are often complex
Beyond element-at-a-time processing
Beyond stream-at-a-time processing
Beyond relational queries (scientific, data mining, OLAP)

Multi-level/multi-dimensional processing and data mining
Most stream data are at low-level or multi-dimensional in
nature

Daniele Loiacono

8Processing Stream Queries

Query types
One-time query vs. continuous query (being evaluated
continuously as stream continues to arrive)
Predefined query vs. ad-hoc query (issued on-line)

Unbounded memory requirements
For real-time response, main memory algorithm should be used
Memory requirement is unbounded if one will join future tuples

Approximate query answering
With bounded memory, it is not always possible
to produce exact answers
High-quality approximate answers are desired
Data reduction and synopsis construction methods:
Sketches, random sampling, histograms, wavelets, etc.

Daniele Loiacono

9Stream Data Mining vs. Stream
Querying

Stream mining is a more challenging task in many cases
It shares most of the difficulties with stream querying
But often requires less “precision”, e.g., no join, grouping,
sorting
Patterns are hidden and more general than querying
It may require exploratory analysis, not necessarily
continuous queries

Stream data mining tasks
Multi-dimensional on-line analysis of streams
Mining outliers and unusual patterns in stream data
Clustering data streams
Classification of stream data

Daniele Loiacono

10Multi-Dimensional Stream Analysis:
Examples

Analysis of Web click streams
Raw data at low levels: seconds, web page addresses,
user IP addresses, …
Analysts want: changes, trends, unusual patterns, at
reasonable levels of details
E.g., Average clicking traffic in North America on sports in
the last 15 minutes is 40% higher than that in the last 24
hours.”

Analysis of power consumption streams
Raw data: power consumption flow for every household,
every minute
Patterns one may find: average hourly power
consumption surges up 30% for manufacturing companies
in Chicago in the last 2 hours today than that of the same
day a week ago

Processing Data

Daniele Loiacono

12What the Methodologies for
Stream Data Processing?

Major challenges
Keep track of a large universe,
e.g., pairs of IP address, not ages

Methodology
Synopses (trade-off between accuracy and storage)
Use synopsis data structure, much smaller (O(logk N) space)
than their base data set (O(N) space)
Compute an approximate answer within a small error range
(factor ε of the actual answer)

Major methods
Random sampling
Histograms
Sliding windows
Multi-resolution model
Sketches
Radomized algorithms

Daniele Loiacono

13Stream Data Processing Methods (1)

Random sampling (but without knowing the total length in advance)
Reservoir sampling: maintain a set of s candidates in the reservoir,
which form a true random sample of the element seen so far in the
stream. As the data stream flow, every new element has a certain
probability (s/N) of replacing an old element in the reservoir.

Sliding windows
Make decisions based only on recent data of sliding window size w
An element arriving at time t expires at time t + w

Histograms
Approximate the frequency distribution of element values in a stream
Partition data into a set of contiguous buckets
Equal-width (equal value range for buckets) vs. V-optimal (minimizing
frequency variance within each bucket)

Multi-resolution models
Popular models: balanced binary trees, micro-clusters, and wavelets

Daniele Loiacono

14Stream Data Processing Methods (2)

Sketches
Histograms and wavelets require multi-passes over the
data but sketches can operate in a single pass
Frequency moments of a stream A = {a1, …, aN}, Fk:

where v: the universe or domain size, mi: the frequency
of i in the sequence

• F0 is the number of distinct elements
• F1 is the number of elements
• F2 is known as repeat rate or Gini’s index of homogeneity

Given N elts and v values, sketches can approximate F0,
F1, F2 in O(log v + log N) space

∑
=

=
v

i

k
ik mF

1

Daniele Loiacono

15Stream Data Processing Methods (3)

Randomized algorithms
Monte Carlo algorithm: bound on running time but may
not return correct result

Chebyshev’s inequality: Let X be a random variable with
mean μ and standard deviation σ

Chernoff bound:
• Let X be the sum of independent Poisson trials X1, …,

Xn, δ in (0, 1]
• The probability decreases expoentially as we move

from the mean

2

2

)|(|
k

kXP σμ ≤>−

4/2

|])1([μδμδ −<+< eXP

Architectures

Daniele Loiacono

17A Stream Cube Architecture

A tilted time frame
Different time granularities:
second, minute, quarter, hour, day, week, …

Critical layers
Minimum interest layer (m-layer)
Observation layer (o-layer)
User: watches at o-layer and occasionally needs to drill-
down down to m-layer

Partial materialization of stream cubes
Full materialization: too space and time consuming
No materialization: slow response at query time
Partial materialization: what do we mean “partial”?

Daniele Loiacono

18A Titled Time Model

Natural tilted time frame:
Example: Minimal: quarter, then 4 quarters → 1 hour, 24
hours → day, …

Logarithmic tilted time frame:
Example: Minimal: 1 minute, then 1, 2, 4, 8, 16, 32, …

Time
t8t 4t 2t t16t32t64t

4 qtrs24 hours31 days12 months
time

Daniele Loiacono

19Two Critical Layers in the Stream
Cube

(*, theme, quarter)

(user-group, URL-group, minute)

m-layer (minimal interest)

(individual-user, URL, second)
(primitive) stream data layer

o-layer (observation)

Daniele Loiacono

20On-Line Partial Materialization vs.
OLAP Processing

On-line materialization
Materialization takes precious space and time

• Only incremental materialization (with tilted time frame)
Only materialize “cuboids” of the critical layers?

• Online computation may take too much time
Preferred solution:

• popular-path approach: Materializing those along the popular
drilling paths

• H-tree structure: Such cuboids can be computed and stored
efficiently using the H-tree structure

Online aggregation vs. query-based computation
Online computing while streaming:
aggregating stream cubes
Query-based computation:
using computed cuboids

Frequent patterns

Daniele Loiacono

22Frequent Patterns in Data Streams

Frequent pattern mining is valuable in stream applications
e.g., network intrusion mining

Many existing algorithms require to scan the dataset more
than once.
Multiple scans are not feasible in data streams, where there
are two main approaches:

Focus on a set of predefined set of items
Provide an approximate answer

• E.g., exploiting the Lossy Counting Algorithm

Daniele Loiacono

Predefined set of items

The algorithm keeps track of a predefined set of items
It requires a single scan of data to compute the exact
frequency of each item
How to choose the predefined set of items?

Focus on a set of “interesting” items
Focus on a set of item known to be frequent in the past

This approach cannot be often used in practice:
A set of “interesting” items might not be available
Choosing items on the basis of past information does not
account for future changes

Daniele Loiacono

24Mining Approximate Frequent
Patterns: Lossy Counting

Approximate answers are often enough (e.g., trend/pattern
analysis)
Example: a router is interested in all flows:

whose frequency is at least 1% (σ) of the entire traffic
stream seen so far
and feels that 1/10 of σ (ε = 0.1%) error is comfortable

How to mine frequent patterns with good approximation?
Lossy Counting Algorithm is able to compute the frequency
of items with an error not bigger than ε

Daniele Loiacono

25Lossy Counting for Frequent Items
(1)

Divide Stream into ‘Buckets’ (bucket size is 1/ ε = 1000)

Bucket 1 Bucket 2 Bucket 3

Daniele Loiacono

26Lossy Counting for Frequent Items
(2)

Empty
(summary) +

At bucket boundary, decrease all counters by 1

Bucket 1

Daniele Loiacono

27Lossy Counting for Frequent Items
(1)

+

At bucket boundary, decrease all counters by 1

Bucket 2

Daniele Loiacono

28Lossy Counting for Frequent Items
(4)

Inputs
support threshold: σ
error threshold: ε
data stream of length N

Output: items with frequency counts exceeding (σ – ε) N
How much do we underestimate frequency?

Not more than one element is “lost” for each buket
The number of buckets is N/w = εN
Frequency count underestimated by at most εN

Approximation guarantee
No false negatives
False positives have true frequency count at least (σ–ε)N
The space requirement is limited to 1/ε log(εN)

Daniele Loiacono

Lossy Counting For Frequent
Itemsets

When applied to find frequent itemsets, the list of
frequencies grows exponentially
To deal with this problem, as many buckets as possible are
loaded in main memory at one time
Example: load 3 buckets into main memory

29

Bucket 1 Bucket 2 Bucket 3

Daniele Loiacono

Lossy Counting For Frequent
Itemsets (2)

With large number of buckets in memory we delete more
itemsets

30

2

2

1

2

1
1

1

summary data 3 bucket data
in memory

4

4

10

2
2

0

+

3

3

9

summary data

Itemset ()
is deleted

Daniele Loiacono

31Lossy Counting For Frequent
Itemsets: Pruning Itemsets

If we find itemset () is not frequent itemset,
Then we needn’t consider its superset

3 bucket data
in memory

1

+

summary data

2
2

1

1

Daniele Loiacono

32Summary of Lossy Counting

Strength
A simple idea
Can be extended to frequent itemsets

Weakness:
Space Bound is not good
For frequent itemsets, they do scan each record many times
The output is based on all previous data. But sometimes, we are
only interested in recent data

Classification

Daniele Loiacono

34Classification in Data Streams
What are the issues?

It is impossible to store the whole data set, as traditional
classification algorithms require
It is usually not possible to perform multiple scans of the
input data
Data streams are time-varying! There is concept drift.

Approaches
Hoeffding Trees
Very Fast Decision Tree
Concept-adapting Very Fast Decision Tree
Ensemble of Classifiers

Daniele Loiacono

35Hoeffding Tree

Initially introduced to analyze click-streams
With high probability, lead to the same decision tree of typical
algorithms
Only uses small sample to choose optimal splitting attribute
It is based on Hoeffding Bound principle

r: random variable representing the attribute selection
method (e.g. information gain)
R: range of r
n: # independent observations
Mean of r is at least ravg – ε, with probability 1 – δ

The bound is used to determine, with high probability the smallest
number N of examples needed at a node to select the splitting
attribute

n
R

2
)/1ln(2 δε =

Daniele Loiacono

36Hoeffding Tree Algorithm

Hoeffding Tree Input
S: sequence of examples
X: attributes
G(): evaluation function
δ: desired accuracy

for each example in S
retrieve G(Xa) and G(Xb)
if (G(Xa) – G(Xb) > ε)
split on Xa
recurse to next node
break

Memory to save to counts elements is O(ldvc), where l is the depth,
d is the number of attributes, v is the maximum number of
attributes, c is the number of classes

Xa and Xa are the
atributes with highest

values of G(), while ε is
computed with the
Hoeffding bound

Daniele Loiacono

37Example

yes no

Packets > 10

Protocol = http

Protocol = ftp

yes

yes no

Packets > 10

Bytes > 60K

Protocol = http

Data Stream

Data Stream

Daniele Loiacono

38Hoeffding Tree:
Strengths and Weaknesses

Strengths
Scales better than traditional methods

Sublinear with sampling
Very small memory utilization

Incremental
Make class predictions in parallel
New examples are added as they come

Weaknesses
Could spend a lot of time with ties
Memory used with tree expansion
Number of candidate attributes

Daniele Loiacono

39VFDT (Very Fast Decision Tree)

Modifications to Hoeffding Tree
Near-ties broken more aggressively
G computed every nmin
Deactivates certain leaves to save memory
Poor attributes dropped
Initialize with traditional learner (helps learning curve)

Compare to Hoeffding Tree: Better time and memory

Compare to traditional decision tree
Similar accuracy
Better runtime with 1.61 million examples

• 21 minutes for VFDT
• 24 hours for C4.5

Still does not handle concept drift

Daniele Loiacono

40CVFDT (Concept-adapting VFDT)

Concept Drift
Time-changing data streams
Incorporate new and eliminate old

CVFDT
Increments count with new example
Decrement old example

• Sliding window
• Nodes assigned monotonically increasing IDs

Grows alternate subtrees
When alternate more accurate, then replace old
O(w) better runtime than VFDT-window

Daniele Loiacono

41Ensemble of Classifiers Algorithm

H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining Concept-
Drifting Data Streams using Ensemble Classifiers”, KDD'03.

Method (derived from the ensemble idea in classification)

train K classifiers from K chunks
for each subsequent chunk

train a new classifier
test other classifiers against the chunk
assign weight to each classifier
select top K classifiers

Clustering

Daniele Loiacono

43Clustering Evolving Data Streams
What methodologies?

Compute and store summaries of past data
Apply a divide-and-conquer strategy
Incremental clustering of incoming data streams
Perform microclustering as well as macroclustering anlysis
Explore multiple time granularity for the analysis of cluster
evolution
Divide stream clustering into on-line and off-line processes

Daniele Loiacono

44Clustering Data Streams

Base on the k-median method
Data stream points from metric space
Find k clusters in the stream s.t. the sum of distances
from data points to their closest center is minimized

Constant factor approximation algorithm
In small space, a simple two step algorithm:

1.For each set of M records, Si,
find O(k) centers in S1, …, Sl
Local clustering: Assign each point in Si to its closest
center

2.Let S’ be centers for S1, …, Sl with each
center weighted by number of points assigned to it
Cluster S’ to find k centers

Daniele Loiacono

45Hierarchical Clustering Tree

data points

level-i medians

level-(i+1) medians

Daniele Loiacono

46Hierarchical Tree and Drawbacks

Method
Maintain at most m level-i medians
On seeing m of them, generate O(k) level-(i+1) medians
of weight equal to the sum of the weights of the
intermediate medians assigned to them

Drawbacks
Low quality for evolving data streams
(register only k centers)
Limited functionality in discovering and exploring clusters
over different portions of the stream over time

Daniele Loiacono

47Clustering for Mining Stream
Dynamics

Network intrusion detection: one example
Detect bursts of activities or abrupt changes in real time—
by on-line clustering

The methodology
by C. Agarwal, J. Han, J. Wang, P.S. Yu, VLDB’03

Tilted time frame work:
o.w. dynamic changes cannot be found
Micro-clustering: better quality than k-means/k-median

• incremental, online processing and maintenance)

Two stages: micro-clustering and macro-clustering
With limited “overhead” to achieve high efficiency,
scalability, quality of results and power of
evolution/change detection

Daniele Loiacono

48CluStream: A Framework
for Clustering Evolving Data Streams

Design goal
High quality for clustering evolving data streams with
greater functionality
While keep the stream mining requirement in mind

• One-pass over the original stream data
• Limited space usage and high efficiency

CluStream: A framework for clustering evolving data streams
Divide the clustering process into online and offline
components
Online component: periodically stores summary statistics
about the stream data
Offline component: answers various user questions based
on the stored summary statistics

Daniele Loiacono

49The CluStream Framework

Micro-cluster
Statistical information about data locality
Temporal extension of the cluster-feature vector

• Multi-dimensional points X1 … Xk …
with time stamps T1 … Tk …

• Each point contains d dimensions, i.e., X = (x1 … xd)
• A micro-cluster for n points is defined as a (2.d + 3) tuple

Pyramidal time frame
Decide at what moments the snapshots of the statistical
information are stored away on disk

()nCFCFCFCF ttxx ,1,2,1,2

Daniele Loiacono

50CluStream: Pyramidal Time Frame

Snapshots of a set of micro-clusters are stored following the
pyramidal pattern

They are stored at differing levels of granularity depending
on the recency

Snapshots are classified into different orders
varying from 1 to log(T)

The i-th order snapshots occur at intervals
of αi where α ≥ 1
Only the last (α + 1) snapshots are stored

Daniele Loiacono

51CluStream: Clustering On-line
Streams

Online micro-cluster maintenance

Initial creation of q micro-clusters
• q is usually significantly larger than

the number of natural clusters

Online incremental update of micro-clusters
• If new point is within max-boundary, insert into the micro-cluster

• O.w., create a new cluster

• May delete obsolete micro-cluster or merge two closest ones

Query-based macro-clustering

Based on a user-specified time-horizon h and the number of
macro-clusters K, compute macroclusters using the k-means
algorithm

Daniele Loiacono

52Stream Data Mining:
What are the Research Issues?

Mining sequential patterns in data streams
Mining partial periodicity in data streams
Mining notable gradients in data streams
Mining outliers and unusual patterns in data streams

Stream clustering
Multi-dimensional clustering analysis?
Cluster not confined to 2-D metric space, how to incorporate
other features, especially non-numerical properties
Stream clustering with other clustering approaches?
Constraint-based cluster analysis with data streams?

Summary

Daniele Loiacono

54Summary: Stream Data Mining

Stream Data Mining is a rich and on-going research field

Current research focus in database community:
DSMS system architecture
Continuous query processing
Supporting mechanisms

Stream data mining and stream OLAP analysis
Powerful tools for finding general and unusual patterns
Effectiveness, efficiency and scalability:
lots of open problems

Philosophy on stream data analysis and mining
A multi-dimensional stream analysis framework
Time is a special dimension: Tilted time frame
What to compute and what to save?—Critical layers
Partial materialization and precomputation
Mining dynamics of stream data

Daniele Loiacono

55Projects on DSMS
(Data Stream Management System)

Research projects and system prototypes
STREAM (Stanford): A general-purpose DSMS
Cougar (Cornell): sensors
Aurora (Brown/MIT): sensor monitoring, dataflow
Hancock (AT&T): telecom streams
Niagara (OGI/Wisconsin): Internet XML databases
OpenCQ (Georgia Tech): triggers, incr. view maintenance
Tapestry (Xerox): pub/sub content-based filtering
Telegraph (Berkeley): adaptive engine for sensors
Tradebot (www.tradebot.com): stock tickers & streams
Tribeca (Bellcore): network monitoring
MAIDS (UIUC/NCSA): Mining Alarming Incidents in Data
Streams

Daniele Loiacono

56References on Stream Data Mining
(1)

C. Aggarwal, J. Han, J. Wang, P. S. Yu. A Framework for Clustering Data
Streams, VLDB'03
C. C. Aggarwal, J. Han, J. Wang and P. S. Yu. On-Demand Classification of
Evolving Data Streams, KDD'04
C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A Framework for Projected
Clustering of High Dimensional Data Streams, VLDB'04
S. Babu and J. Widom. Continuous Queries over Data Streams. SIGMOD
Record, Sept. 2001
B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom. Models and Issues
in Data Stream Systems”, PODS'02. (Conference tutorial)
Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. "Multi-Dimensional
Regression Analysis of Time-Series Data Streams, VLDB'02
P. Domingos and G. Hulten, “Mining high-speed data streams”, KDD'00
A. Dobra, M. N. Garofalakis, J. Gehrke, R. Rastogi. Processing Complex
Aggregate Queries over Data Streams, SIGMOD’02
J. Gehrke, F. Korn, D. Srivastava. On computing correlated aggregates over
continuous data streams. SIGMOD'01
C. Giannella, J. Han, J. Pei, X. Yan and P.S. Yu. Mining frequent patterns in
data streams at multiple time granularities, Kargupta, et al. (eds.), Next
Generation Data Mining’04

Daniele Loiacono

57References on Stream Data Mining
(2)

S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering Data
Streams, FOCS'00
G. Hulten, L. Spencer and P. Domingos: Mining time-changing data streams.
KDD 2001
S. Madden, M. Shah, J. Hellerstein, V. Raman, Continuously Adaptive
Continuous Queries over Streams, SIGMOD02
G. Manku, R. Motwani. Approximate Frequency Counts over Data Streams,
VLDB’02
A. Metwally, D. Agrawal, and A. El Abbadi. Efficient Computation of Frequent
and Top-k Elements in Data Streams. ICDT'05
S. Muthukrishnan, Data streams: algorithms and applications, Proceedings
of the fourteenth annual ACM-SIAM symposium on Discrete algorithms,
2003
R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Univ.
Press, 1995
S. Viglas and J. Naughton, Rate-Based Query Optimization for Streaming
Information Sources, SIGMOD’02
Y. Zhu and D. Shasha. StatStream: Statistical Monitoring of Thousands of
Data Streams in Real Time, VLDB’02
H. Wang, W. Fan, P. S. Yu, and J. Han, Mining Concept-Drifting Data
Streams using Ensemble Classifiers, KDD'03

