

Support Vector Machines: a gentle introduction

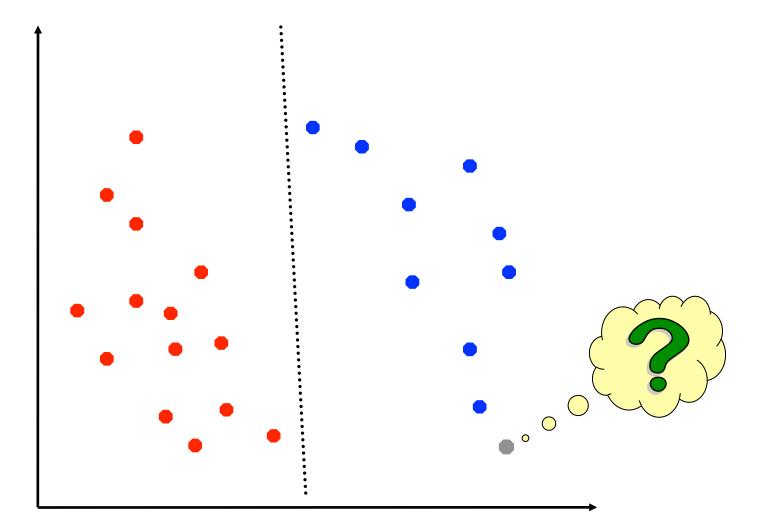
Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)

Part 1: What are SVMs?

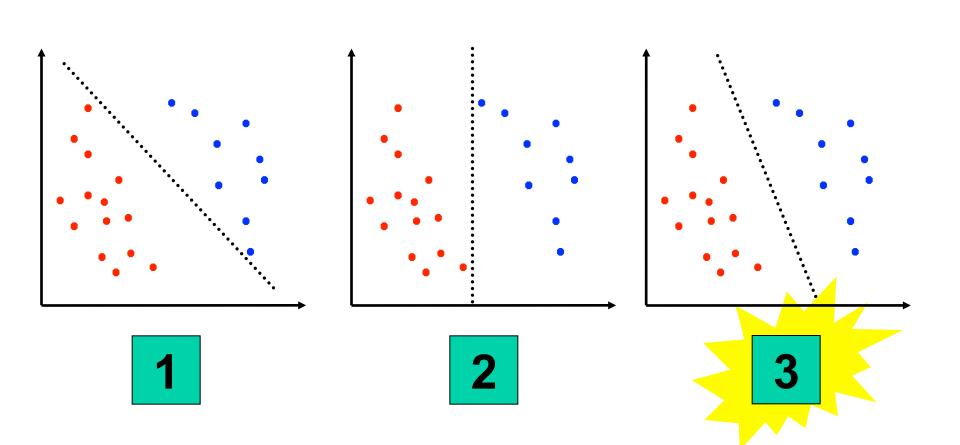
□ The problem

- Separating Hyperplane
- The optimization problem
- Derivation of the dual problem and Support Vector Expansion
- □ The Soft-Margin optimization problem

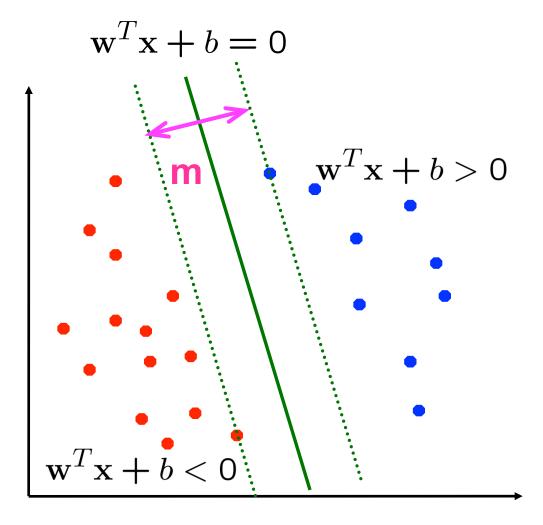
What is all about?



Guess the best!



Separating Hyperplane



POLITECNICO DI MILANO

Separating Hyperplane

□ Scale problem

$$\forall c > 0, \{\mathbf{w}^T \mathbf{x} + b = 0\} \Longleftrightarrow \{c \mathbf{w}^T \mathbf{x} + cb = 0\}$$

□ Canonical hyperplane

$$\min_{\mathbf{x}_{i}} |\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b| = 1$$

□ Margin of the hyperplane

$$m = \frac{2}{||\mathbf{w}||}$$

The optimization problem

□ More formally the problem is:

Minimize
$$\frac{1}{2} ||\mathbf{w}||^2$$

subject to $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 \quad \forall i$

□ Is an optimization problem with inequality constraints...

Derivation of the dual problem

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

□ L has to minimized w.r.t. the primal variables w and b and maximized with respect to the dual variables a_i >=0

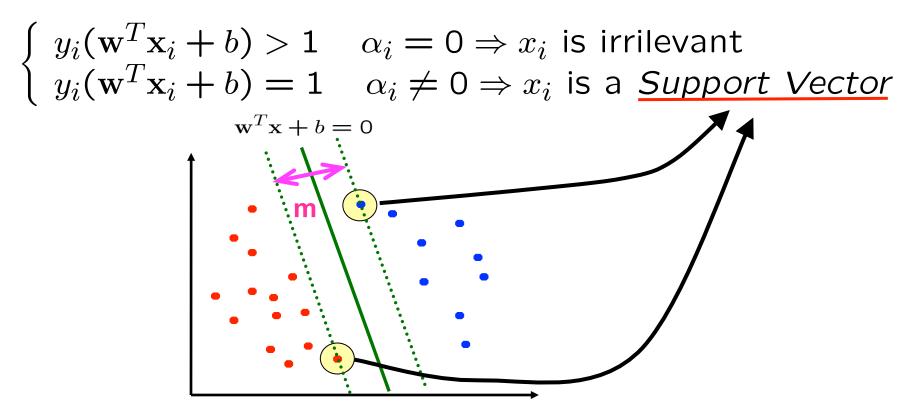
$$\frac{\partial}{\partial \mathbf{w}} \mathcal{L} = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$
$$\frac{\partial}{\partial b} \mathcal{L} = 0 \quad \Rightarrow \quad \sum_{i=1}^{n} \alpha_i y_i = 0$$

□ Substitute both in L to get the **dual problem**

Support Vectors

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

where for all $i = 1, \cdots, m$



The dual problem

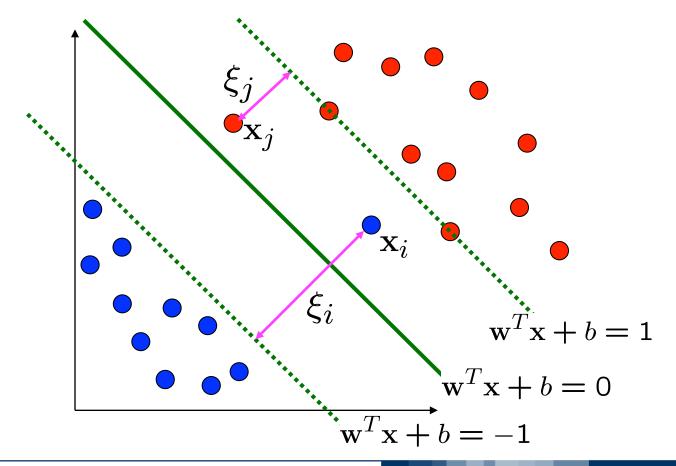
□ The value of a_i can be found solving the following quadratic optimization problem (the dual optimization problem):

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

subject to $\alpha_i \ge 0, \sum_{i=1}^{n} \alpha_i y_i = 0$

Non-linearly Separable Problem

In practice problem are not often linearly separable
In this case we allow "error" ξ_i in classification:



Soft-Margin optimization problem

$$\begin{aligned} \text{Minimize } \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \xi_i \\ \text{subject to } y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq 1 - \xi_i \quad \forall i \\ \xi_i > 0 \quad \forall i \end{aligned}$$

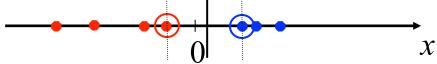
- \Box ξ_i are "slack variables" in optimization
- □ *C* is a tradeoff parameter between error and margin

Part 2: SVMs in a non linear world

- Extension to non linear classification problem
- □ Mastering the Kernel Trick

Non-linearly separable problem

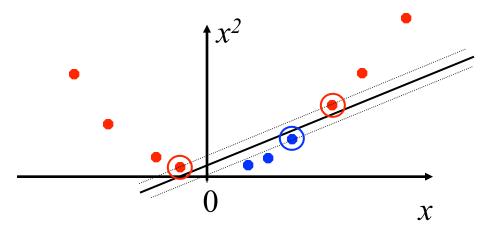
So far we considered only (almost) linearly separable problems:



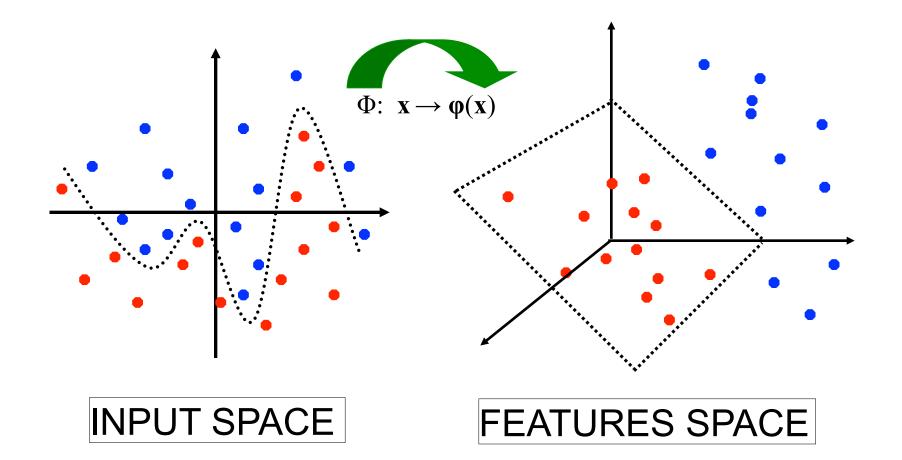
□ But what are we going to do if this is not the case?

0 x

□ How about mapping data to a higher-dimensional space?



Non-linearly separable problems (2)



POLITECNICO DI MILANO

The Kernel Trick

But a suitable features space have often very high dimensionality (too expensive for computation)

□ We use the Kernel trick! Recall the dual problem:

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

subject to $C \ge \alpha_i \ge 0, \sum_{i=1}^{n} \alpha_i y_i = 0$

We only need to know the dot product in the features space
We define the kernel function as

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

and

$$\mathbf{x}_i^T \mathbf{x}_j \to K(\mathbf{x}_i, \mathbf{x}_j)$$

An Example for kernel

Suppose $\varphi(.)$ is given as follows $\phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$

□ An inner product in the feature space is

$$\langle \phi(\begin{bmatrix} x_1\\x_2 \end{bmatrix}), \phi(\begin{bmatrix} y_1\\y_2 \end{bmatrix}) \rangle = (1 + x_1y_1 + x_2y_2)^2$$

□ So, if we define the kernel function as follows, there is no need to carry out $\varphi(.)$ explicitly

$$K(\mathbf{x}, \mathbf{y}) = (1 + x_1y_1 + x_2y_2)^2$$

In general even some high dimensional features space admit an easy to compute kernel!

Part 3: Why does SVMs work?

A naïve introduction to statistical learning (VC) theory:

- Risk Minimization
- □ Uniform convergence
- □ VC-dimension
- Structural Risk Minimization
- □ The VC theory and SVMs

Risk Minimization

□ We want learn a decision function f: $X \rightarrow \{-1,+1\}$ from a set of samples $\{(x_1,y_1),...,(x_n,y_n)\}$ generated i.i.d. from P(x, y)

□ The expected misclassification error on a test set will be:

$$R[f] = \int \frac{1}{2} |f(x) - y| \, dP(x, y)$$

- Our goal is the minimization of R[f] (Risk Minimization)
- But P(x,y) is unknown, we can only minimize the error on the training set (Empirical Risk):

$$R_{emp}[f] = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} |f(x) - y||$$

Does it converge?

□ At least we want to prove that:

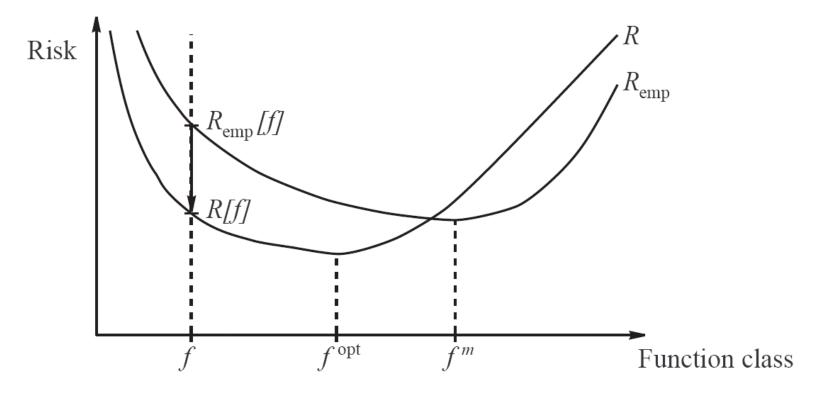
$$\lim_{n \to \infty} R_{emp}[f] = R[f]$$

- Sketch of the proof
 - ► loss: $\xi_i = \frac{1}{2} |f(x_i) y_i|$
 - \triangleright ξ_i as independent Bernoulli trials
 - for the law of large numbers the empirical mean (the Empirical Risk) will converge to the expected value of ξ_i (the Risk, R[f])
 - Chernoff's Bound:

$$P\left(\left|\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-E[\xi]\right|\geq\varepsilon\right)\leq 2e^{-2n\varepsilon^{2}}$$

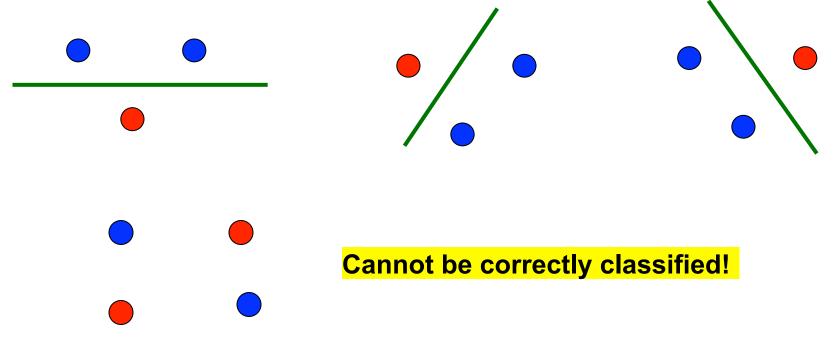
The sad truth!

- \Box ξ_i are not independent if the function class is not fixed
- In a more general case we would need an uniform convergence
- □ How can we find a bound? Statistical Learning (VC) Theory

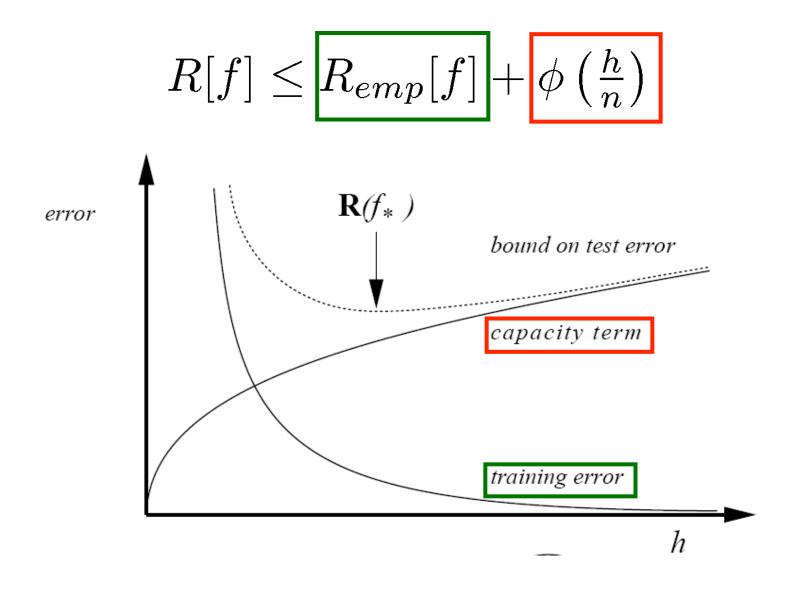


VC-dimension

- Vapnik-Chervonenkis introduced a measure of the flexibility (capacity) of a classifier, the VC-dimension
- VC-dimension is the maximal number of samples the classifier can always classify correctly without any error
- For example a linear classifier in a 2D space has VCdimension, h=3



Structural Risk Minimization



POLITECNICO DI MILANO

What about SVMs ?

- □ Recall that a linear separator in R^2 has VC-dimension, h=3
- □ In general a linear separator in R^N has VC-dimension, h = N+1
- A separating hyperplane in an high dimensional features space used can have a very high VC-dimension and thus generalizing bad
- Instead, large margin hyperplane <w,b> have a bounded VC-dimension:

$$h \le R^2 ||\mathbf{w}||^2$$

where R is the radius of the smallest sphere around the origin containing the training samples

Part 4: Advanced Topics

- □ v-SVM
- □ Training SVM
- Multi-class SVM
- Regression

 $\nu\text{-}\mathsf{SVM}$

$$\begin{array}{l} \text{Minimize } \frac{1}{2} ||\mathbf{w}||^2 + \frac{\nu\rho}{m} + \frac{1}{m} \sum_{i=1}^n \xi_i \\ \text{subject to } y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq \rho - \xi_i \quad \forall i \\ \xi_i > 0 \quad \forall i \end{array}$$

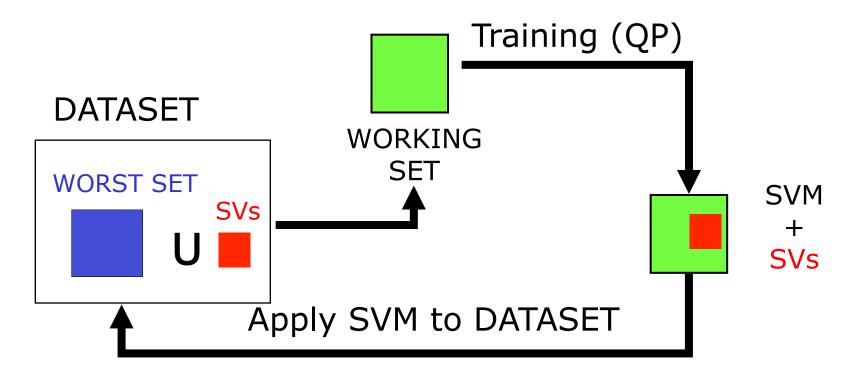
- $\hfill \hfill \hfill$
- Properties

Fraction of Margin Errors $\leq v \leq$ fraction of SVs

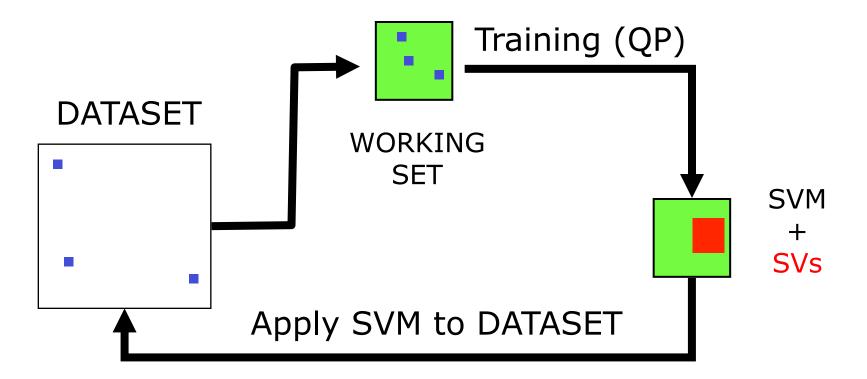
SVM Training

- □ Just solve the optimization problem to find a_i and b
- Image: Joint March Ma
- □ Faster approaches:
 - Chunking
 - Osuna's methods
 - Sequential Minimal Optimization
- Online learning:
 - Chunking-based methods
 - Incremental methods

Chunking

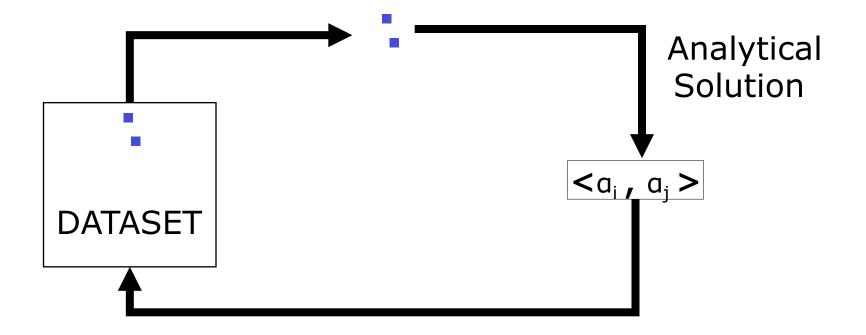


- Solves iteratively a sub-problem (working set)
- Build the working set with current SVs and the M samples with the bigger error (worst set)
- □ Size of the working set may increase!
- Converges to optimal solution!



- Solves iteratively a sub-problem (working set)
- Replace some samples in the working set with missclassified samples in data set
- □ Size of the working set is fixed!
- Converges to optimal solution!

Sequential Minimal Optimization



- Works iteratively only on two samples
- Size of the working set is minimal and multipliers are found analytically
- Converges to optimal solution!

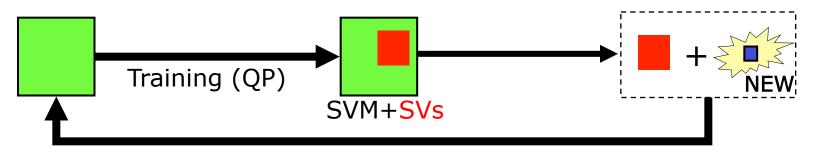
Online Learning

Batch Learning

- All the samples known in advance
- Training at once
- Online Learning
 - One sample at each time step
 - Adaptive Training
- Applications
 - Huge Dataset
 - Data streaming (e.g. satellite, financial markets)
- Approaches
 - Chunking-based
 - Incremental

Online Learning (2)

Chunking-based methods

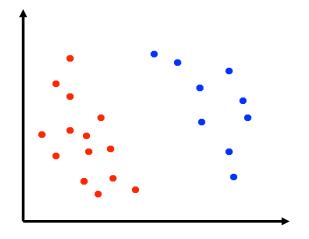


Incremental methods

- Adapting online the Lagrangian multipliers on the arrival of new samples
- Recursive solution to the QP optimization problem
- Incremental methods are not widely used because they are too tricky and complex to implement

Multi-class SVM

□ So far we considered two-classes problems:



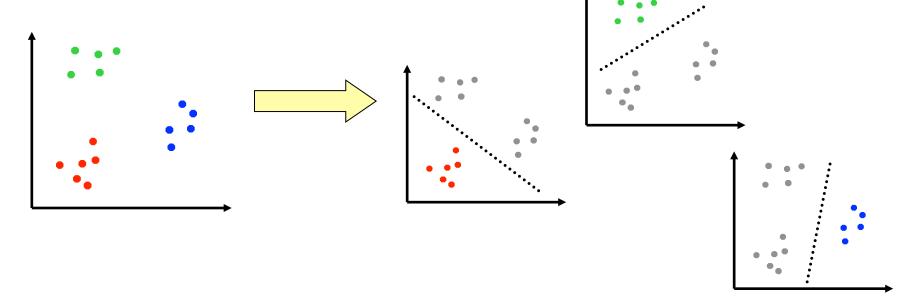
□ How does SVM deal with multi-class problems?

Multi-class SVM: the approaches

- □ Adapt the problem formulation to a multi-class problems
 - Complex
 - Poor performing
- Reduce a k-class problem to N of 2-class problems
 - Computationally expensive
 - Simple (based on usual SVMs)
 - Good performance
- □ The second solution is widely used and we focus on it

One-against-all

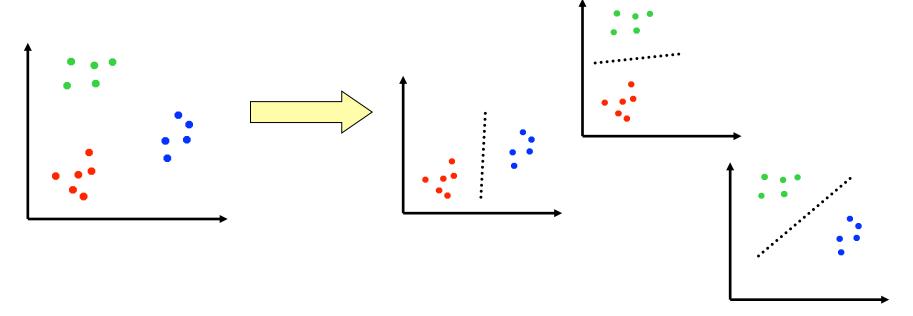
A k-class problem is decomposed in k binary (2-class) problems



- Training is performed on the entire dataset and involves k SVM classifiers
- Test is performed choosing the class selected with the highest margin among the k SVM classifiers

One-against-one

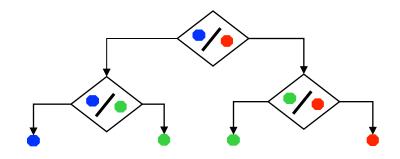
A k-class problem is decomposed in k(k-1)/2 binary (2-class) problems



- The k(k-1)/2 SVM classifiers are trained on subsets of the dataset
- Test is performed by applying all the k(k-1)/2 classifiers to the new sample and the most voted label is chosen

DAGSVM

- In DAGSVM, the k-class problem is decomposed in k(k-1)/2 binary (2-class) problems as in one-against-one
- □ Training is performed as in one-against-one
- But test is performed using a Direct Acyclic Graph to reduce the number of SVM classifiers to apply:



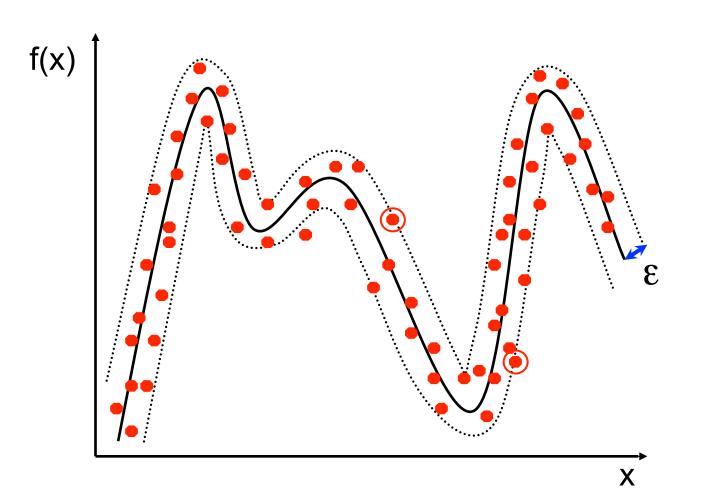
The test process involves only k-1 binary SVM classifiers instead of k(k-1)/2 as in one-against-one approach

Multi-class SVM: summary

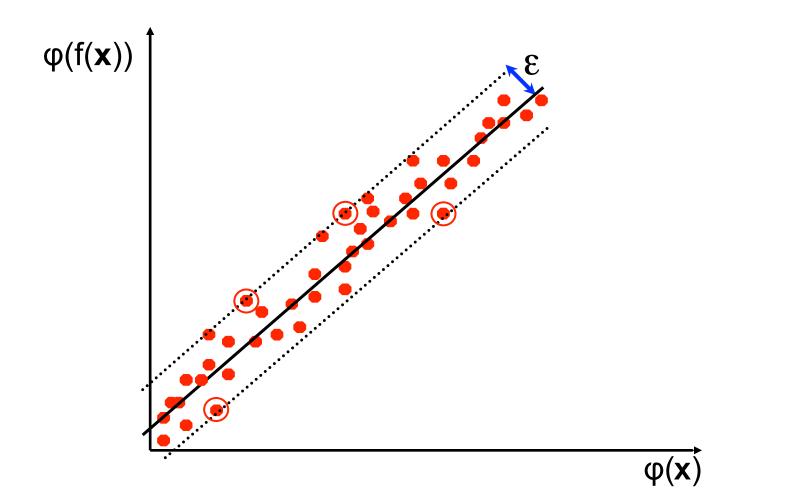
One-against-all

- cheap in terms of memory requirements
- expensive training but cheap test
- One-against-one
 - expensive in terms of memory requirements
 - expensive test but slightly cheap training
- DAGSVM
 - expensive in terms of memory requirements
 - slightly cheap training and cheap test
- One-against-one is the best performing approach, due to the most effective decomposition
- **DAGSVM** is a **faster approximation** of one-against-one

Regression



POLITECNICO DI MILANO

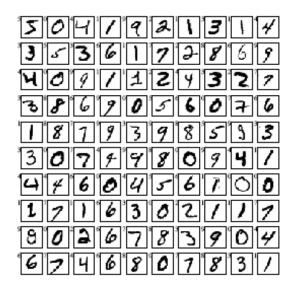


POLITECNICO DI MILANO

Part 5: Applications

- □ Handwriting recognition
- Face detection

Handwriting recognition

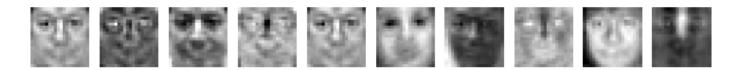


MNIST Benchmark

- 60000 training samples
- 10000 test samples
- 28x28 pixel

Classifier	Test Error
Linear Classifier	8.4%
3-nearest-neighbour	2.4%
SVM	1.4%
LeNet4	1.1%
Boosted LeNet4	0.7%
Translation Invariant	
SVM	0.56%

Face Detection



Templates

Daniele Loiacono

POLITECNICO DI MILANO

Summary

- SVM search for an optimal **separating hyperplane**
- □ With kernel trick, SVM extend to non-linear problems
- SVM have a strong theoretical background
- □ SVM are **very expensive** to train
- SVM can be extended to
 - Multi-class problems
 - Regression problems
- SVM have been successfully applied to many problems

Pointers

- http://www.kernel-machines.org/
- http://videolectures.net/
- LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)