

Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)

References

- Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann Series in Data Management Systems (Second Edition)
 - Chapter 10
- Web Mining Course by Gregory-Platesky Shapiro available at www.kdnuggets.com

Federico Facca and Pier Luca Lanzi. Mining Interesting Knowledge from Weblogs: A Survey. Journal of Data and Knowledge Engineering, 53(3):225–241, 2005.

POLITECNICO DI MILANO

How big is the Web?

Discovering interesting and useful information from Web content and usage

Examples

- ▶ Web search, e.g. Google, Yahoo, MSN, Ask, ...
- Specialized search: e.g. Froogle (comparison shopping), job ads (Flipdog)
- eCommerce
- Recommendations (Netflix, Amazon, etc.)
- Improving conversion rate: next best product to offer
- Advertising, e.g. Google Adsense
- Fraud detection: click fraud detection, ...
- Improving Web site design and performance

Web Mining Challenges

- Huge amount of data
- Complexity of Web pages
 - Different styles
 - Different contents
- Highly dynamic and rapidly growing information
 - Number of sites is rapidly growing
 - Information is constantly updated
- □ Web serves many user communities
 - Users with different interests, background and purposes
 - "99% of the Web information is useless to 99% of Web users"

Web Mining Taxonomy

Web Mining Taxonomy

Web Mining Taxonomy

Mining Web Page Layout Structure

- □ Web page is more than plain text
- Web page structure is defined by the DOM (Document Object Model) tree, where nodes are the HTML tags
- Issues
 - Not all the pages follows the standards
 - DOM tree does not always reflect the page semantic

Mining Web Page Layout Structure

Daniele Loiacono

POLITECNICO DI MILANO

Vision-based Page Segmentation

Example of Web Page Segmentation

(DOM Structure)

(VIPS Structure)

Mining Web's Link Structure

- □ How to identify **authoritative** page?
- □ The answer is in the **Web linkage structure**
- Issues in Web linkage mining
 - Links do not always represent endorsements (e.g., adv)
 - Important competitors do not usually link each other
 - Authoritative pages are generally not self-descriptive
- □ To discover authorities we should also look for hub pages
 - Hub are pages that provide collections of links to authorities
 - Hub pages are not necessary highly linked
 - Hub pages implicitly confer authorities on focused topics
- Hub and authoritative pages have a mutual reinforcement relationship
 - A good hub page points to many good authorities, a good authority is a page pointed by many good hub pages

□ Startup

- Root set built from results from an index-based search engine
- Base set built including pages linked by and linking to the root set pages
- Authority weight, a_p, and hub weight, h_p, are iteratively computed

$$a_p = \sum_{\forall q:q \to p} h_q \qquad \qquad h_p = \sum_{\forall q:q \leftarrow p} a_q$$

□ In matrix form

□ The authority weight vector and the hub weight vector if normalized converge to the eigenvectors of AA^T and A^TA

- Underlying assumptions:
 - Links convey endorsement
 - Pages co-linked by a certain page are likely to be related to the same topic
- □ VIPS-based approach
 - Block-to-page relationship

$$Z_{ij} = \begin{cases} 1/s_i, & \text{if block } i \text{ point to page } j \\ 0, & \text{otherwise} \end{cases}$$

where s_i is the number of pages linked by block *i*

Page-to-block relationship

$$X_{ij} = \begin{cases} f_{p_i}(b_j), & \text{if } b_j \in p_i \\ 0, & \text{otherwise} \end{cases}$$

where $f_p(b)$ represents how b is important in page p

Adjacency matrix can be defined as

$$W_P = XZ$$

Hyperlink-Induce Topic Search (3)

- Multimedia data is embedded in Web pages
- Links and surrounding text might help the data mining process
- □ VIPS algorithm is the basis to extract knowledge
 - A block-to-image relationship can be built
 - The block-to-image relationship can be integrated with a block-level link analysis
 - The resulting image graph reflect the semantic relationship between the images
- The image graph can be used for classification and clustering purposes

Web usage mining is the extraction of interesting knowledge from server log files

- Applications
 - Mining logs of a single user
 - Web content personalization
 - Mining logs of groups of users
 - Supporting Web design
- Issues
 - Where is the data?
 - How to preprocess the data?
 - Which mining techniques?

Data sources

□ Logs can be collected at different levels

- Server side
- Proxy side
- Client side

□ Web server log

- Standard format (e.g., LogML)
- Large amount of information (IP, request info, etc.)
- User session can be difficult to identify
- Special buttons (e.g., Back, Stop) cannot be tracked
- □ TCP/IP packet sniffer
 - Data collected in real-time
 - Data from different web servers can be merged easily
 - Some special buttons can be tracked (e.g. Stop)
 - Does not scale very well
- Exploiting the server application layer
 - Very effective
 - Not always possible
 - Requires ad-hoc solutions for each web server

- Almost the same information available on server side
- Data of groups of users accessing to huge groups of web servers
- □ Sessions can be anyway identified

Data sources: client side

- □ Collecting data with JavaScript or Java applets
- □ Exploiting a modified Web browser
- Perfect identification of the user session
- Requires user collaboration

Preprocessing: data cleaning

- Data cleaning consists of removing from Web logs useless data for mining purposes
- □ Content requests (e.g. images) are usually easily removed
- □ Robots and Web spiders should be removed on the basis of
 - Remote hostname
 - Access to robots.txt
 - Navigation pattern

Preprocessing: session identification and reconstruction

- Goals
 - Identifying the session of different users
 - Reconstruction the navigation path in identified session
- Challenges
 - Proxy
 - Browser caching and special buttons
- Solutions
 - Cookies
 - URL rewriting
 - JavaScript (e.g. SurfAid)
 - Consistency of navigation path
 - Timeout heuristic for session termination

Applications

- Personalization of Web content
 - Behavior anticipation
 - Recommendation of interesting links
 - Content reorganizations
- Pre-fetching and caching
 - Caching and pre-fetching of content to reduce the server response time
- Support to Web design
 - Analysis of frequent patterns to improve the usability of Web sites
- E-commerce
 - Analysis of customer behaviors (attrition, fidelity, etc.)

- Generally URLs are the only information available on pages
- A richer information about visited pages may help the discovering of interesting Web usage patterns
- □ Main approaches
 - Pages categorization
 - Pre-defined
 - Automatically discovered with Web mining techniques
 - Semantic Web for Web Usage Mining
 - Ontology mapping
 - Learning of ontology from data
 - Extraction of concept-based navigation paths

Mining Techniques

- The main techniques used for the analysis of collected data are
 - Association rules

```
A.html, B.html => C.html
```

- Sequential patterns extraction
 - General purpose algorithm (e.g., AprioriAll)
 - Ad hoc solution for Web logs (WAP-mine)
- Clustering of sessions
 - Based on sequence alignment
 - Association rule hypergraph partitioning
 - build a graph representing frequent patterns
 - Edges weighting based on pattern relevance
 - Partitioning of graph to extract users' behaviors