

La codifica binaria

Informatica B

Introduzione

- ☐ Il calcolatore usa internamente una codifica binaria (0 e 1) per rappresentare:
 - ▶ i dati da elaborare (numeri, testi, immagini, suoni,...)
 - ▶ le istruzioni dei programmi eseguibili
- Le informazioni:
 - ▶ In input vengono codificate
 - ▶ In output vengono decodificate
- Fondamenti di codifica dell'informazione:
 - Codifica dei numeri
 - Naturali
 - Interi
 - Frazionari
 - Codifica dei caratteri
 - Codifica delle immagini
 - Algebra di Boole

Codifica numeri naturali

Rappresentazione in base p

Metodo posizionale: ogni cifra ha un peso che dipende dalla posizione

Esempio:
$$123 = 100 + 20 + 3$$

 $312 = 300 + 10 + 2$

- Di solito noi usiamo la base decimale
- □ Un numero generico di m cifre è rappresentato dalla sequenza: a_n , a_{n-1} , a_{n-2} ,..., a_0

```
a_n: cifra più significativa a_0: cifra meno significativa n = m-1 a_i \in \{0, 1, ..., p-1\}
```

Rappresentazione in base p

■ Un numero naturale N, composto da m cifre, in base p, si esprime come:

$$N_{p} = a_{m-1} \cdot p^{m-1} + \dots + a_{1} \cdot p^{1} + a_{0} \cdot p^{0} = \sum_{i=0}^{m-1} a_{i} \cdot p^{i}$$

$$\forall i \qquad 0 \le a_{i} \le p-1$$

- Esempio in *base decimale* (p=10): $587_{10} = 5 \cdot 10^2 + 8 \cdot 10^1 + 7 \cdot 10^0$
- Posso rappresentare i numeri nell'intervallo discreto: $[0, p^m 1]$

Rappresentazione in base due

- Base binaria: p=2; cifre $a_i \in \{0, 1\}$ chiamate bit (binary digit)
- Otto bit sono chiamati byte
- Esempio, con m=5: $11011_2 = (1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0)_{10} = 27_{10}$
- Posso rappresentare i numeri nell'intervallo discreto: $[0, 2^m 1]$
- □ Esempio con m=8: rappresento numeri binari: $[00000000_2, 111111111_2]$, ovvero: [0, 255]

Conversioni di base

- Per convertire da base due a base 10:
 - Usare la sommatoria illustrata nella slide precedente
- □ Per convertire da base dieci a base due:
 - Metodo delle divisioni successive
 - ightharpoonup Esempio: $13_{10} = 1101_2$

•
$$13/2 = 6$$
 resto = 1

•
$$6/2 = 3$$
 resto = 0

•
$$3/2 = 1$$
 resto = 1

•
$$1/2 = 0$$
 resto = 1

1101

Basi ottale ed esadecimale

- □ *Base ottale*: p=8; $a_i \in \{0, 1, 2, 3, 4, 5, 6, 7\}$
 - ► Esempio: $234_8 = (2.8^2 + 3.8^1 + 4.8^0)_{10} = 156_{10}$
- □ Base esadecimale: p=16; $a_i \in \{0, 1, 2, ..., 9, A, B, C, D, E, F\}$
 - ► Esempio: $B7F_{16} = (11 \cdot 16^2 + 7 \cdot 16^1 + 15 \cdot 16^0)_{10} = 2943_{10}$
 - Notare: "11" al posto di "B" e "15" al posto di "F", i loro equivalenti in base dieci

Somma

- ☐ Si somma cifra per cifra
- ☐ La somma può generare un riporto
- ☐ Il riporto dovrà essere considerato nella somma seguente

Riporto precedente	Somma	Risultato	Riporto	
0	0 + 0	0	0	
0	0 + 1 1 + 0	1	0	
0	1 + 1	0	1	
1	0 + 0	1	0	
1	0 + 1 1 + 0	0	1	
1	1 + 1	1	1	

Somma e carry

Esempio:

```
1 ← riporto
             0101 +
                                  (5_{10})
             1001 =
                                  (9_{10})
             1110
                                  (14_{10})
           111 ← riporti
                                    (15_{10})
             1111 +
                                    (10_{10})
             1010 =
carry → 11001
                                    (25_{10} \text{ se uso 5 bit};
                                     9<sub>10</sub> se considero 4 bit: errato)
```

Esercizi:

- □ Scrivere tutti i numeri binari (e il valore decimale) che possono essere rappresentati con 4 bit
- □ Convertire i numeri 5 e 9 in base 2 usando 4 bit, e eseguire la somma
- Convertire i numeri 41 e 18 in base 2 usando 6 bit, e eseguire la somma
- ☐ Eseguire la somma dei numeri binari: 01011 e 00110
- ☐ Eseguire la somma dei numeri binari: 01111 e 10110

Codifica numeri interi

Modulo e segno

- Occorre codificare anche il "segno"
- Uso un bit per memorizzare il segno: "1" significa numero negativo, "0" numero positivo. Esempio m=3:

Num. intero, base 10	Num. intero, base due, modulo e segno
-3	111
-2	110
-1	101
-0	100
+0	000
+1	001
+2	010
+3	011

Complemento a due (CPL₂)

- □ Usando *m* bit: $(-N)_{CPL2} = (2^m N_{10})_2$
- □ Esempio (m=3): $(-N)_{CPL2} = (2^3 N_{10})_2$

Num. intero base 10	Trasformazione	Num. intero, base 2, CPL_2 , $m=3$
-4	8 - 4 = 4	4 ₁₀ = 100
-3	8 - 3 = 5	5 ₁₀ = 101
-2	8 - 2 = 6	6 ₁₀ = 110
-1	8 - 1 = 7	7 ₁₀ = 111
0	nessuna	0 ₁₀ = 000
1	nessuna	1 ₁₀ = 001
2	nessuna	2 ₁₀ = 010
3	nessuna	3 ₁₀ = 011

Complemento a due (CPL₂)

Posso rappresentare i numeri nell'intervallo discreto:

$$[-2^{m-1}, 2^{m-1}-1]$$

- Asimmetria tra negativi e positivi
- ► Esempio (m=8): [-128, +127], perché -2⁷ = -128 e 2⁷ 1 = +127
- □ Tutti i numeri negativi cominciano con il bit più significativo posto a "1", mentre tutti i positivi e lo zero iniziano con uno "0"
- Codifica di –N da base 10 a complemento a 2
 - ▶ Rappresentare 2^m N
 - Rappresento N, complemento tutti i bit e sommo 1

Somma e sottrazione in CPL₂

- Somma: come per i naturali
- □ Sottrazione: $N_1 N_2 = N_1 + (-N_2)_{CPL2}$
- ☐ Carry:
 - ▶ Il carry non viene considerato!
- Overflow:
 - ▶ Se, sommando due interi di m bit dotati di segno concorde, ottengo un risultato di segno discorde (sempre considerando m bit), allora si ha un overflow (il risultato non è codificabile su m bit) e l'operazione è errata
 - L'overflow non può verificarsi se gli operandi sono di segno discorde

Esercizi:

- ☐ Elencare tutti i numeri binari in CPL₂ di 4 bit
- ☐ Convertire i numeri 11 e −7 in CPL₂ e effettuarne la somma
- Eseguire in binario, 5 13 e convertire il risultato in decimale
- Eseguire in binario (4 bit), 5 5 : c'è overflow?
- \square Eseguire in binario (4 bit), 5 + 5 : c'è overflow?

Codifica numeri frazionari

Parte frazionaria di un numero

- Rappresentiamo la parte frazionaria di un numero reale
- □ In base due, un numero frazionario N, composto da n cifre, si esprime come:

$$N_2 = a_{-1} \cdot 2^{-1} + a_{-2} \cdot 2^{-2} + \dots + a_{-n} \cdot 2^{-n} = \sum_{i=-n}^{-1} a_i \cdot 2^i$$

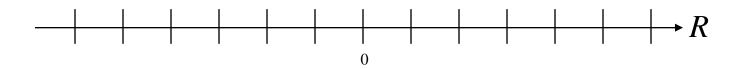
- Esempio con n=3: $0,101_2 = (1\cdot2^{-1}+0\cdot2^{-2}+1\cdot2^{-3})_{10} = 0,625_{10}$
- □ Date *n* cifre in base p=2, posso rappresentare numeri nell'intervallo continuo: $[0, 1-2^{-n}]$
- ☐ L'errore di approssimazione sarà minore di 2⁻ⁿ

Esercizi

- ☐ Convertire in binario: 0,125
- ☐ Convertire in binario: 0,375
- □ Convertire in decimale: 11,11
- ☐ Elencare tutti i numeri con solo 3 bit per la parte frazionaria

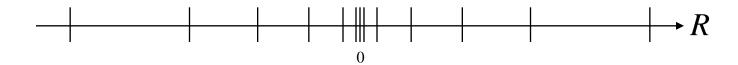
Virgola fissa

- ☐ Uso *m* bit e *n* bit per parte intera e frazionaria
 - ► Esempio (m=8, n=6, tot. 14 bit): -123,21₁₀ -123₁₀ = 10000101₂ 0,21₁₀ ≈ 001101₂ -123,21₁₀ ≈ 10000101,001101₂
- \square Come scelgo m e n?
- Precisione costante lungo l'asse reale R:

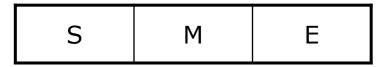


Virgola mobile (floating point)

- ☐ Il numero è espresso come: $r = m \cdot b^n$
 - ▶ m e n sono in base p
 - m: mantissa (numero frazionario con segno)
 - b: base della notazione esponenziale (numero naturale)
 - n: caratteristica (numero intero)
 - ► Esempio (p=10, b=10): -331,6875 = -0,3316875·10³ m = -0,3316875; n = 3
- Uso I_1 bit e I_2 bit per codificare m e n
 - ☐ Precisione variabile lungo l'asse reale *R*:



Standard IEEE 754-1985



- □Il numero è espresso come: $[S]M \cdot 2^n$
- ■1 bit per il segno S
- ■Mantissa M normalizzata tra 1.0000.. e 1.11111...
- □La parte intera (sempre 1) della mantissa viene omessa
- ■L'esponente viene memorizzato in eccesso K
 - \triangleright E = n + K
 - $ightharpoonup K = 2^{m-1} 1$ (se m = 8 K = 127)

Standard IEEE 754-1985

Campo	Precisione singola	Precisione doppia	Precisione quadrupla	
Ampiezza tot	32	64	128	
S	1	1	1	
Е	8	11	15	
М	23	52	111	
K	127	1023	16383	

Esercizi

- □ Codificare secondo lo standard IEEE a precisione singola il seguente numero decimale: 42.6875
- □ Codificare secondo lo standard IEEE a precisione singola il seguente numero decimale: 0.875
- Convertire in base dieci il seguente numero espresso nella codifica floating point:
 - ▶ S=0
 - ► M=10010011 0000000 0000000
 - ► E=10000100

Soluzioni

- 1. $X = 42.6875 \rightarrow 101010.1011 = 1.010101011 \times 2^5$
 - ightharpoonup S = 0 (1 bit)
 - \triangleright E = 5 + K = 5 + 127 = 132 -> 10000100 (8 bit)
 - M = 01010101 10000000 0000000 (23 bit)
- 2. $X = 0.875 \rightarrow 0.111 = 1.11 \times 2^{-1}$
 - ightharpoonup S = 0 (1 bit)
 - \triangleright E = -1 + K = -1 + 127 = 126 -> 01111110 (8 bit)
 - M = 11000000 00000000 0000000 (23 bit)
- 3. $E=10000100 \rightarrow E = 128+4 127 = 5$ 1.M (1.10010011 0000000 0000000) \rightarrow 110010.011 110010 = 32+16+2 = 50 .011 = 0.25+0.125 = 0.375 \rightarrow X=50.375

Algebra di Boole

Algebra di Boole

- Elementi base:
 - ► Formule Atomiche (Preposizioni): A,B,C...
 - Operatori: AND, OR, NOT
- Formule Ben Formate:
 - ▶ Tutte le proposizioni
 - ▶ P AND Q
 - ▶ P OR Q
 - ► NOT P
- AND e OR sono operatori *binari*
- NOT è un operatore unario

Proposizioni

- ☐ Le proposizioni sono formule atomiche
- Non possono essere ulteriormente scomposte (non contengono AND,NOT,OR)
- Le proposizioni servono a modellare delle affermazioni che possono essere vere o false:
 - A: "domani piove"
 - ▶ B: "domani farà caldo"
 - C: "la scatola contiene più di 5 palline"
- Rappresentiamo "vero" con "1" e "falso" con "0"

Formule

- ☐ Il valore di verità delle formule dipende da:
 - Valore delle proposizioni atomiche
 - Operatori utilizzati
- Per rappresentare tale dipendenza si scrive la <u>tavola di</u> <u>verità</u>:
 - ► Si calcola il valore di verità della formula in base a <u>tutte le</u> <u>possibili combinazioni delle proposizioni atomiche</u>
 - Si utilizzano le tavole di verità degli operatori logici

Operatori booleani

☐ Tavole di verità:

Α	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

Α	NOT A
0	1
1	0

Operatori booleani: proprietà

- Commutativa:
 - ▶ A OR B = B OR A
 - ► A AND B = B AND A
- Distributiva di uno verso l'altro:
 - ► A OR (B AND C) = (A OR B) AND (A OR C)
 - \blacktriangleright A AND (B OR C) = (A AND B) OR (A AND C)
- ☐ Leggi di De Morgan:
 - ► A AND B = NOT ((NOT A) OR (NOT B))
 - ► A OR B = NOT ((NOT A) AND (NOT B))

Espressioni booleane

- Regole di precedenza:
 - NOT ha la massima precedenza
 - poi segue AND
 - ▶ infine OR
- □ Se voglio alterare queste precedenze devo usare le parentesi (a volte usate solo per maggior chiarezza)
- □ Per valutare un espressione booleana si usa la tabella della verità
- Due espressioni booleane sono uguali se e solo se le tabelle della verità sono identiche
- □ Gli "IF" dei linguaggi di programmazione dipendono da espressioni booleane: if (a>0 && a<10) ...

Esercizi

- ☐ Scrivere la tabella di verità delle seguenti formule booleane:
 - ► A AND NOT(B)
 - ► NOT (A OR B)
 - ▶ B OR (A OR NOT(A))

Esempio

□ Vediamo un esempio, per l'espressione:D = A AND NOT (B OR C)

Α	В	С	D = A AND NOT (B OR C)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Codifica caratteri

Caratteri

- Codifica numerica
- ASCII (American Standard Code for Information Interchange) utilizza 7 bit (estesa a 8 bit)
- L'ASCII codifica:
 - ▶ I caratteri alfanumerici (lettere maiuscole e minuscole e numeri), compreso lo spazio
 - ▶ I simboli (punteggiatura, @, #, ...)
 - Alcuni caratteri di controllo che non rappresentano simboli visualizzabili (TAB, LINEFEED, RETURN, BELL, ecc)

Tabella ASCII (parziale)

DEC	CAR								
48	0	65	Α	75	K	97	а	107	k
49	1	66	В	76	L	98	b	108	1
50	2	67	С	77	M	99	С	109	m
51	3	68	D	78	Ν	100	d	110	n
52	4	69	Е	79	0	101	е	111	o
53	5	70	F	80	Р	102	f	112	р
54	6	71	G	81	Q	103	g	113	q
55	7	72	Н	82	R	104	h	114	r
56	8	73	I	83	S	105	i	115	s
57	9	74	J	84	Т	106	j	116	t
				85	U			117	u
				86	V			118	V
				87	W			119	w
				88	X			120	x
				89	Υ			121	у
				90	Z			122	z

Codifica immagini

L'immagine digitale

- Le immagini sono codificate come sequenze di bit
- Digitalizzazione: passaggio dall'immagine alla sequenza binaria
- L'immagine è suddivisa in una griglia di punti (detti *pixel*)
- Ogni pixel è descritto da un numero (su 8, 16, 24, o 32 bit) che ne rappresenta il colore (es. con 8 bit → 2⁸ = 256 combinazioni di colore)
- Dimensioni dell'immagine: larghezza e altezza, in pollici



L'immagine digitale

- Risoluzione: è data come numero di pixel per pollice (dpi - dot per inch)
 - Spesso (ma non sempre) la risoluzione orizzontale è uguale a quella verticale
- Standard di codifica:
 - ► TIFF, PNG: comprimono l'immagine, per ridurne l'occupazione, senza deteriorarla (compressione lossless)
 - ▶ JPEG: comprime (molto di più), ma deteriora l'immagine (compressione *lossy*)