
Daniele Loiacono

Artificial Intelligence in Racing Games
Videogame Design and Programming

Daniele Loiacono

Racing AI in a nutshell

Control

System

Tactical

System

Strategic

System

Control System

Daniele Loiacono

Overview

 Control system takes a control action on the basis of

current status of the vehicle

target position and speed

 Based on car and environment dynamics

 Might involve heuristics or approximations

4

Current
Status

Target
Status

Control
Action

Daniele Loiacono

What about the target? 5

Daniele Loiacono

Understanding the problem…

Daniele Loiacono

Understanding the problem…

Shortest path

or

minimum curvature ?

Daniele Loiacono

How to find the optimal racing line?

Expert Design

Heuristics

Model-Based Optimization

Genetic Algorithms

Daniele Loiacono

Expert design +Test

Daniele Loiacono

Heuristics

Greedy Search

Daniele Loiacono

Model Based(1)

Driver Model & Car
Dynamics

Grid search of the best
convex combination of

SP and MCP

SP

MCP

Daniele Loiacono

Model Based (2)

 Controllers in racing games are not ideal: models can lead to
suboptimal performance

 It might be difficult to deal with any detail of the tracks

different type of borders (curbs, barriers, sand, grass)

bumps and banking

different friction

 One optimal trade-off between MCP and SP on the whole
track?

SP

MCP

Daniele Loiacono

How to extend it?

Search for the best trade-off in each
segment of the track

Replace models with the actual
racing simulator

Replace the grid search with a GA

Daniele Loiacono

Genetic Algorithms (1)

α1 α2 … αn

 Too many variables!

 Does not exploit any domain information (i.e., SP and MCP)

NO!

Daniele Loiacono

Genetic Algorithms (2)

ε1

ε2

…

ε9

 Few variables (up to 30-40 in the most complex tracks)

 Exploits the knowledge of SP and MCP

 Continuous by design

Daniele Loiacono

Genetic Algorithms (3)

Track GA Model-Based Heuristics

Aalborg 69.928 +0.766 +0.834

Alpine 1 121.481 +1.063 +1.395

Alpine 2 92.527 +0.549 +1.807

A-Speedway 24.701 +0.437 +2.857

Forza 85.210 +0.476 +1.398

CG-Speedway 39.372 +0.422 +0.748

Michigan-Speedway 33.866 +0.024 -0.124

Olethros Road 111.656 +1.270 +2.974

Ruudskogen 62.732 +0.476 +0.474

Street 1 75.613 +0.511 -0.933

Wheel 1 74.887 +0.519 -0.963

 Results achieved in a case study:

Daniele Loiacono

How control system uses the
racing line?

Daniele Loiacono

Daniele Loiacono

Daniele Loiacono

Following the racing line

 Control system follows a racing line provided in input

 It is usually programmed based on the following domain
knowledge:

Car parameters (e.g., engine power, brakes efficiency)

Environment parameters (e.g., friction of the asphalt)

In-game dynamics (e.g., aerodynamics)

 It is generally fine tuned to guarantee an optimal behaviour

Tactical System

Daniele Loiacono

Tactical system

 Performs complex maneuvers

Follows a preceding vehicle taking its slipstream

Overtakes when appropriate

Blocks following vehicles

 Handles specific situations

Avoids imminent collisions

Recovers the vehicle if it gets stuck against a border

22

Daniele Loiacono

Behavior Decomposition

Daniele Loiacono

How to design complex behaviors?

Programmed Heuristics

Domain Expert Rules

Learning

Daniele Loiacono

Examples of Heuristics

 Alternative racing lines for overtaking

 Programmed recovery policy

α

Daniele Loiacono

Learning driving behaviors

Daniele Loiacono

Learnig Overtaking Behavior: Problem
Definition

 State Space

Frontal distance from the
opponent car

Lateral distance from the
opponent car

Distance from the side of the
track

Speed difference

 Action

move 1m on right

keep current trajectory

move 1m on left

 Reward

+1 overtake completed

-1 collision or out of track

0 otherwise Frontal Distance

Lateral

Distance

Aerodynamic Friction

Daniele Loiacono

Learning Brake Delay: Problem Definition

 State Space

Frontal distance from the
opponent car

Distance from the next turn

Speed difference

 Action

Do not brake

 Reward

+1 overtake completed

-1 collision or out of track

0 otherwise

 Works on top of the driving
policy

Strategic System

Daniele Loiacono

Strategic system 30

 Balance AI skills

Determines how fast an AI should race depending to
difficulty level, pilot skills, etc.

Forces mistakes at a realistic rate

 Handles resources in high simulative titles

Manages fuel consumption, tyre wear and damages

Chooses when go to pit

Daniele Loiacono

Examples of Strategic System

 Rubber band

Skill of vehicles behind the player is
increased

Skill of vehicles ahead of the player is
reduced

Too simple: has some drawbacks

 Scripted strategy

Much more customizable by designers

Allows different and, possibly, more
realistic strategies

Offers more opportunities for research

Ref. Jimenez, E. (2008). The Pure
Advantage: Advanced Racing Game AI.
(http://www.gamasutra.com/)

.

How to get started?

Daniele Loiacono

Simulated Car Racing

 Simulated Car Racing is a scientific competition based on The
Open Racing Car Simulator (TORCS)

 Competitors are provided with

a simple API (Java and C++) to build their own controller

a complete sensors/effectors model

 Goal of the competition is developing the fastest controller

 Competition software is open source and is a good starting
point to learn programming a racing AI

http://cig.ws.dei.polimi.it/?page_id=134

http://groups.google.com/group/racingcompetition

Daniele Loiacono

The Open Racing Car Simulator

 TORCS is a state of the art open source simulator written in C++

 Main features

Sophisticated dynamics

Provided with several
cars, tracks, and
controllers

Active community of
users and developers

Easy to develop your
own controller

 OS Support

Linux: binaries and building from sources

Windows: binaries and “limited” building from sources support

OSX: legacy binaries and no building from sources support

Daniele Loiacono

Software Overview

 To make TORCS more easy to use we
developed an API based on socket (UDP)

 Values of sensors and effectors are sent
through UDP

 3 components

Torcs Patch

Server Bot (C++)

Client API (C++ and Java)

Server BOT

TORCS

Client
Controlller

Patch

UDP

Daniele Loiacono

Main Sensors

 Rangefinders for…

…edges of the track

…opponents

 Speed, RPM, fuel, damage, angle with track, distance race,
position on track, etc.

Daniele Loiacono

Sensors (1)

Daniele Loiacono

Sensors (2)

Daniele Loiacono

Sensors (3)

Daniele Loiacono

Main Effectors

 Basically 4 main effectors

Steering wheel [-1,+1]

Gas pedal [0, +1]

Brake pedal [0,+1]

Gearbox {-1,0,1,2,3,4,5,6,7}

Daniele Loiacono

Effectors

