
V POLITECNICO DI MILANO

Artificial Intelligence in Racing Games

Videogame Design and Programming

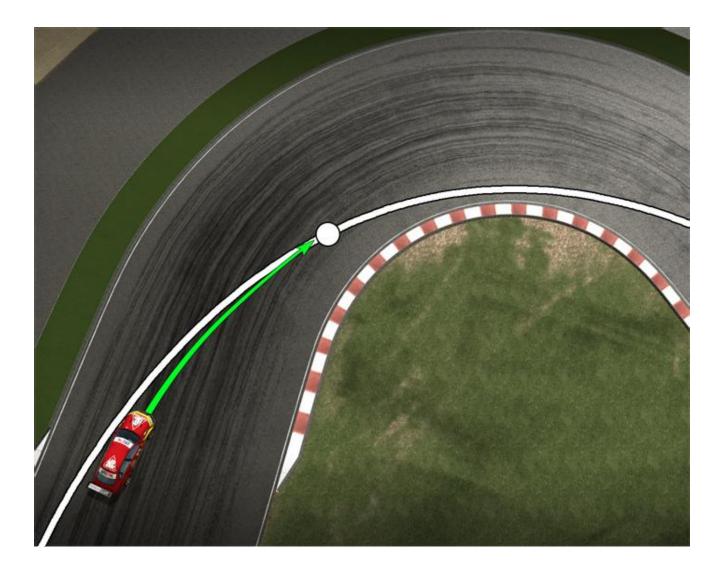
Racing AI in a nutshell

Daniele Loiacono

Control System

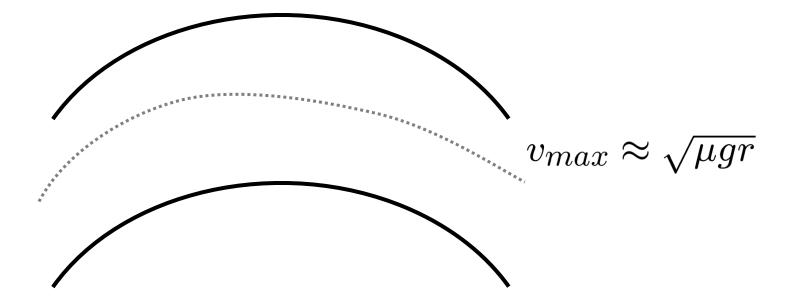
Overview

Control system takes a control action on the basis of

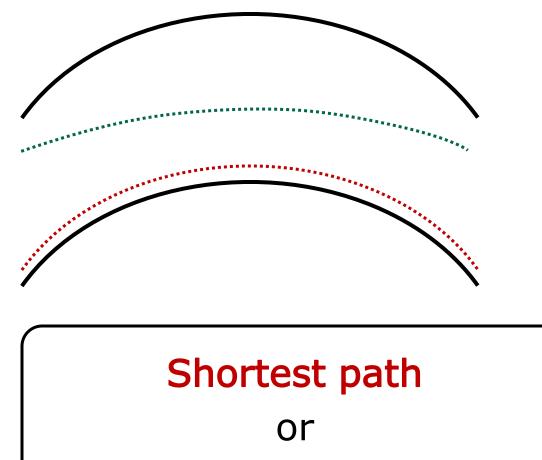

- current status of the vehicle
- target position and speed
- Based on car and environment dynamics
- Might involve heuristics or approximations

4

What about the target?



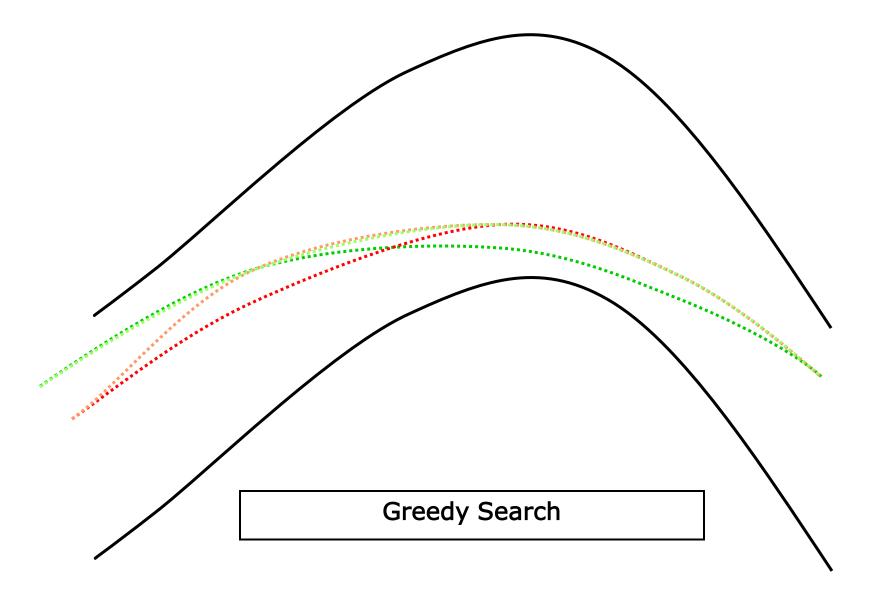
Daniele Loiacono



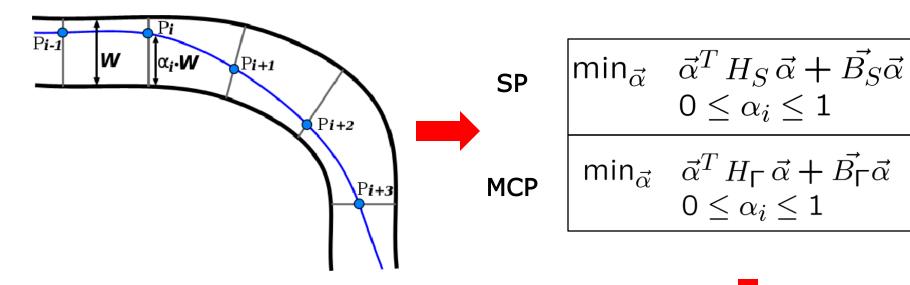
Understanding the problem...

Understanding the problem...

minimum curvature ?



Expert design +Test

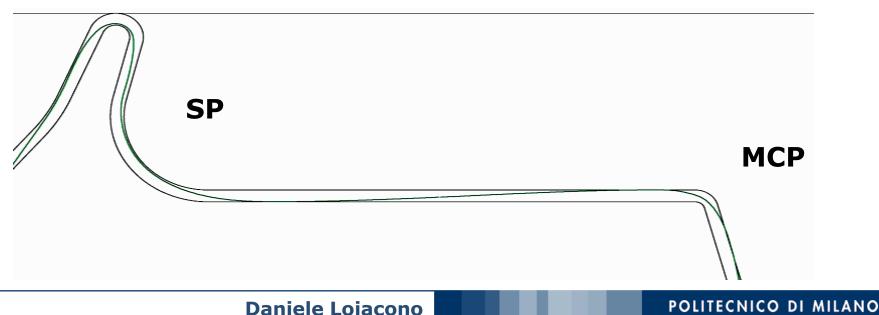


Daniele Loiacono

Heuristics

Model Based(1)

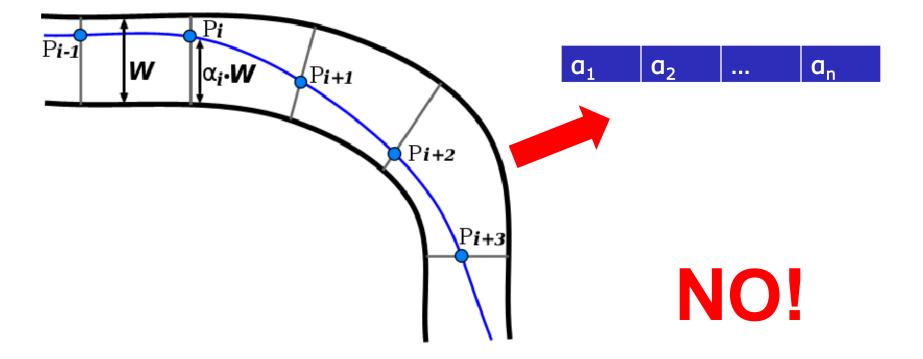
$$\begin{split} \frac{dS_0}{dt} &= -S_0 \left(f + S_u + S_{uv^*} + S_{uv^*} + S_{uvv} + S_{uvv} + S_{uvv^*} \right) \\ \frac{dS_{v^*}}{dt} &= S_0 \left(\frac{2f}{5} + S_{v^*} + S_{uvv} \right) \\ \frac{dS_u}{dt} &= S_0 \left(\frac{3f}{5} + S_u + S_{uv^*} + S_{uvv} + S_{uv} \right) - S_u \left(\frac{4f}{5} + S_{v^*} + S_{uvv} + \frac{2}{3} \left(S_u + S_{uv} + S_{uvv^*} + S_{uv^*} \right) \right) \\ \frac{dS_{uv}}{dt} &= S_u \left(\frac{2f}{5} + S_{v^*} + S_{uvv} \right) - S_{uv} \left(\frac{3f}{5} + \frac{1}{2} \left(S_{v^*} + S_{uvv} \right) + \frac{2}{3} \left(S_u + S_{uvv^*} + S_{uv^*} + S_{uv} \right) \right) \\ \frac{dS_{uvv}}{dt} &= S_u \left(\frac{2f}{5} + \frac{2}{3} \left(S_u + S_{uvv^*} + S_{uv^*} + S_{uv} \right) \right) \\ \frac{dS_{uvv}}{dt} &= S_{uvv} \left(\frac{f}{5} + \frac{1}{2} \left(S_{v^*} + S_{uvv} \right) \right) \\ \frac{dS_{uvv}}{dt} &= S_{uvv} \left(\frac{2f}{5} + \frac{2}{3} \left(S_u + S_{uvv} + S_{uvv^*} + S_{uvv} \right) \right) \end{split}$$


Grid search of the best convex combination of SP and MCP

Driver Model & Car Dynamics

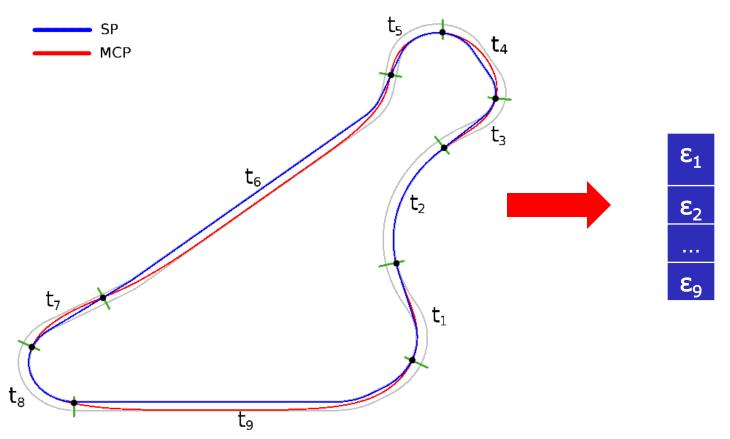
Model Based (2)

- Controllers in racing games are not ideal: models can lead to suboptimal performance
- □ It might be difficult to deal with any detail of the tracks
 - different type of borders (curbs, barriers, sand, grass)
 - bumps and banking
 - different friction
- One optimal trade-off between MCP and SP on the whole track?


How to extend it?

Search for the best trade-off in *each* segment of the track

Replace models with the actual racing simulator

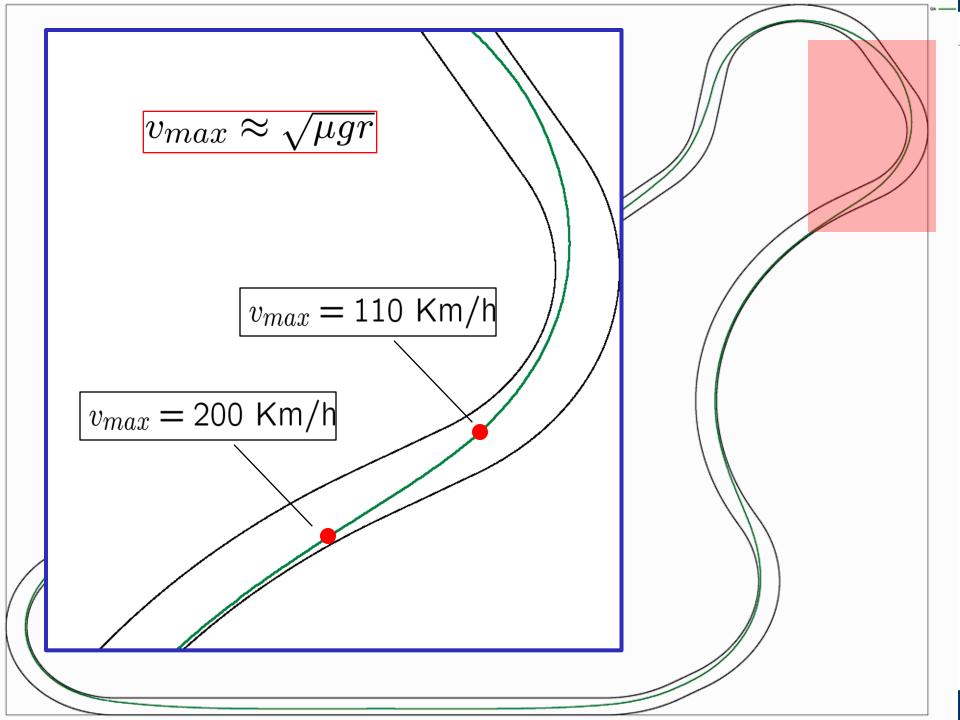

Replace the grid search with a GA

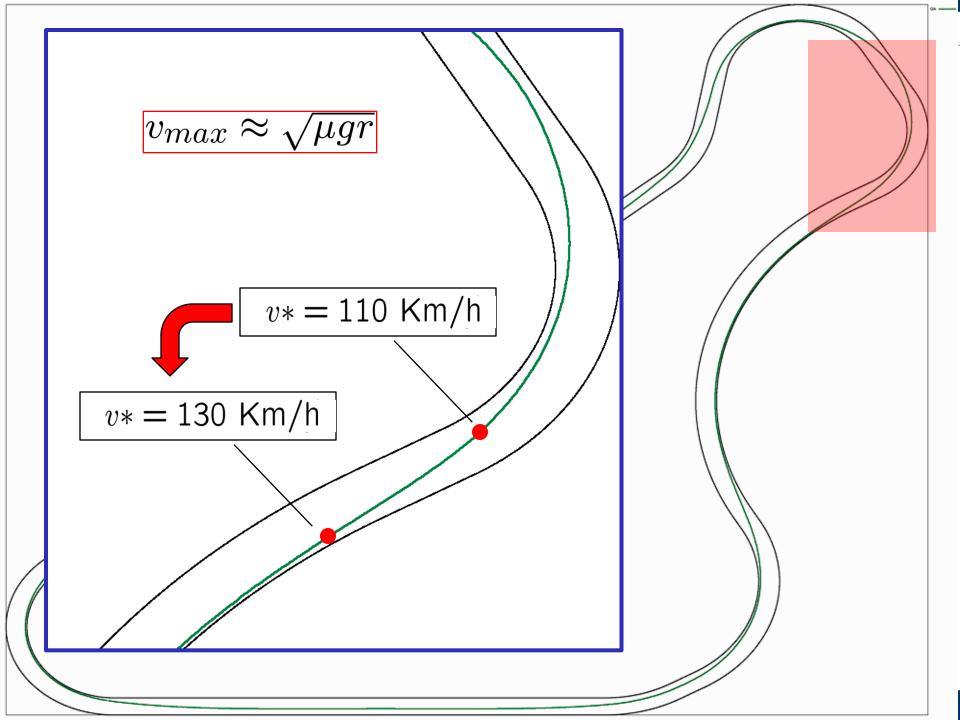
Genetic Algorithms (1)

- □ Too many variables!
- Does not exploit any domain information (i.e., SP and MCP)

Genetic Algorithms (2)

- □ Few variables (up to 30-40 in the most complex tracks)
- □ Exploits the knowledge of SP and MCP
- Continuous by design


Genetic Algorithms (3)


□ Results achieved in a case study:

Track	GA	Model-Based	Heuristics
Aalborg	69.928	+0.766	+0.834
Alpine 1	121.481	+1.063	+1.395
Alpine 2	92.527	+0.549	+1.807
A-Speedway	24.701	+0.437	+2.857
Forza	85.210	+0.476	+1.398
CG-Speedway	39.372	+0.422	+0.748
Michigan-Speedway	33.866	+0.024	-0.124
Olethros Road	111.656	+1.270	+2.974
Ruudskogen	62.732	+0.476	+0.474
Street 1	75.613	+0.511	-0.933
Wheel 1	74.887	+0.519	-0.963

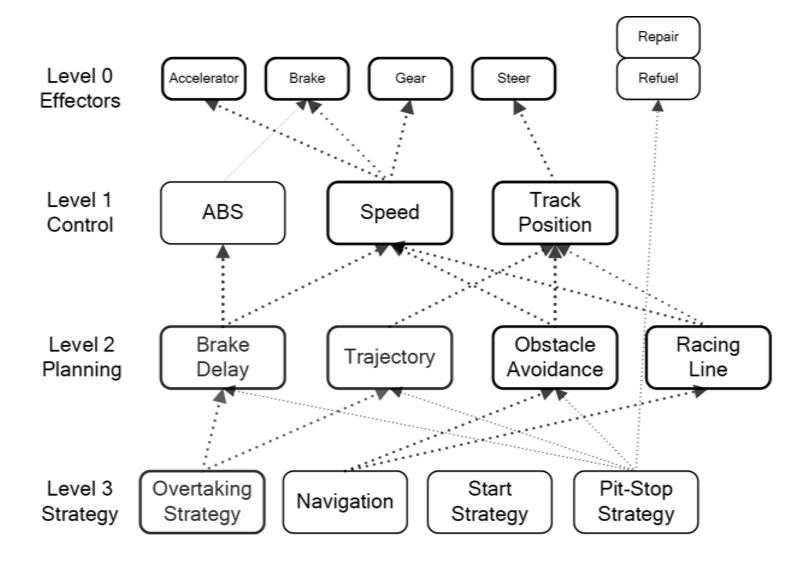
How control system uses the racing line?

Daniele Loiacono

Following the racing line

- Control system follows a racing line provided in input
- It is usually programmed based on the following domain knowledge:
 - Car parameters (e.g., engine power, brakes efficiency)
 - Environment parameters (e.g., friction of the asphalt)
 - In-game dynamics (e.g., aerodynamics)
- □ It is generally fine tuned to guarantee an optimal behaviour

Tactical System

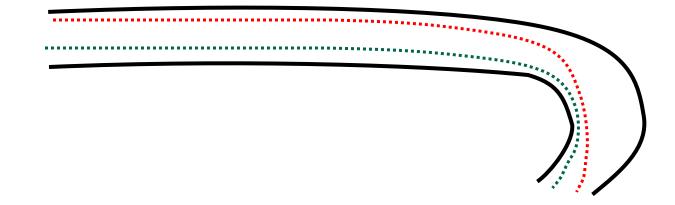

Tactical system

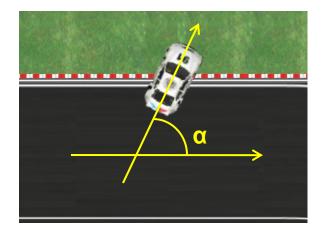
Performs complex maneuvers


- Follows a preceding vehicle taking its slipstream
- Overtakes when appropriate
- Blocks following vehicles
- Handles specific situations
 - Avoids imminent collisions
 - Recovers the vehicle if it gets stuck against a border

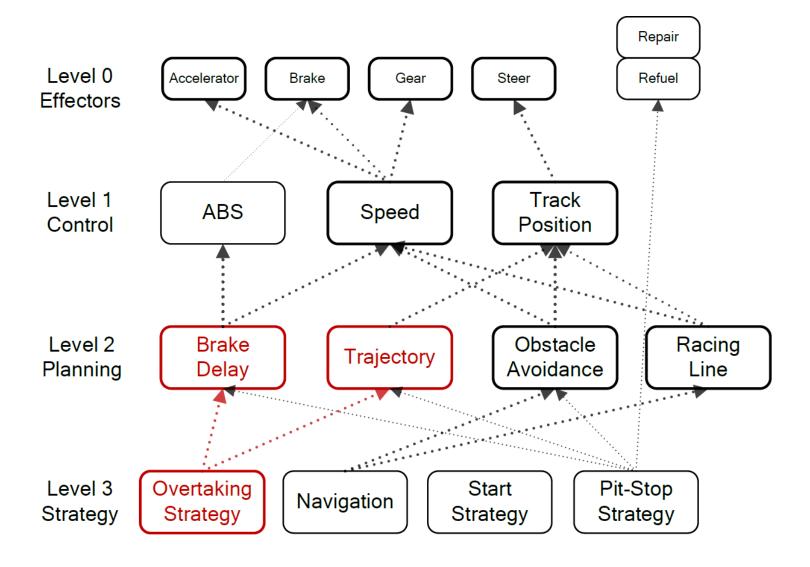
22

Behavior Decomposition


Daniele Loiacono


Daniele Loiacono

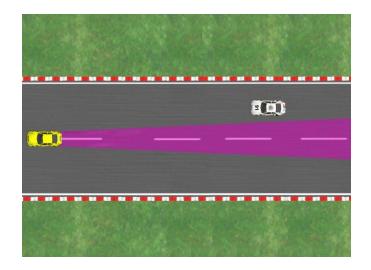
Examples of Heuristics



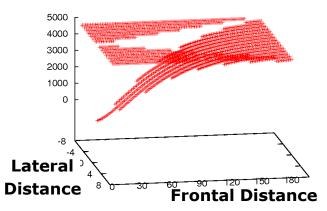
Programmed recovery policy

Daniele Loiacono

Learning driving behaviors



Daniele Loiacono



Learnig Overtaking Behavior: Problem Definition

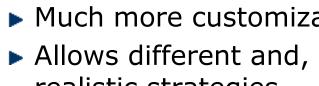
- □ State Space
 - Frontal distance from the opponent car
 - Lateral distance from the opponent car
 - Distance from the side of the track
 - Speed difference
- Action
 - move 1m on right
 - keep current trajectory
 - move 1m on left
- Reward
 - +1 overtake completed
 - -1 collision or out of track
 - 0 otherwise

Aerodynamic Friction

POLITECNICO DI MILANO

Learning Brake Delay: Problem Definition

- State Space
 - Frontal distance from the opponent car
 - Distance from the next turn
 - Speed difference
- Action
 - Do not brake
- Reward
 - +1 overtake completed
 - -1 collision or out of track
 - 0 otherwise
- Works on top of the driving policy


Strategic System

Strategic system

Balance AI skills

- Determines how fast an AI should race depending to difficulty level, pilot skills, etc.
- Forces mistakes at a realistic rate
- □ Handles resources in high simulative titles
 - Manages fuel consumption, tyre wear and damages
 - Chooses when go to pit

30

Examples of Strategic System

Rubber band

increased

reduced

Scripted strategy

Too simple: has some drawbacks

Much more customizable by designers

Skill of vehicles behind the player is

Skill of vehicles ahead of the player is

- Allows different and, possibly, more realistic strategies
- Offers more opportunities for research
- ▶ Ref. Jimenez, E. (2008). The Pure Advantage: Advanced Racing Game AI. (http://www.gamasutra.com/)

How to get started?

Simulated Car Racing

- Simulated Car Racing is a scientific competition based on The Open Racing Car Simulator (TORCS)
- Competitors are provided with
 - ▶ a simple API (Java and C++) to build their own controller
 - a complete sensors/effectors model
- Goal of the competition is developing the fastest controller
- Competition software is open source and is a good starting point to learn programming a racing AI

http://cig.ws.dei.polimi.it/?page_id=134

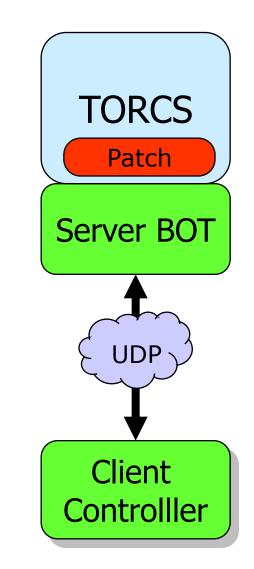
http://groups.google.com/group/racingcompetition

The Open Racing Car Simulator

□ TORCS is a state of the art open source simulator written in C++

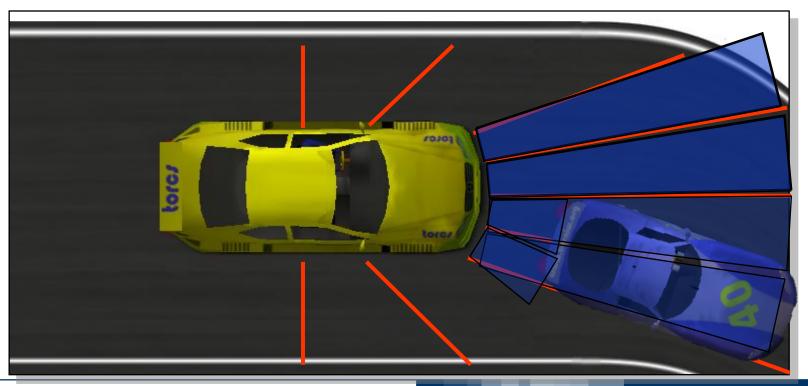
Main features

- Sophisticated dynamics
- Provided with several cars, tracks, and controllers
- Active community of users and developers
- Easy to develop your own controller



OS Support

- Linux: binaries and building from sources
- Windows: binaries and "limited" building from sources support
- ► OSX: legacy binaries and no building from sources support ⊗


Software Overview

- To make TORCS more easy to use we developed an API based on socket (UDP)
- Values of sensors and effectors are sent through UDP
- 3 components
 - Torcs Patch
 - Server Bot (C++)
 - Client API (C++ and Java)

Main Sensors

- □ Rangefinders for...
 - …edges of the track
 - …opponents
- Speed, RPM, fuel, damage, angle with track, distance race, position on track, etc.

Daniele Loiacono

Sensors (1)

Name	Range (unit)	Description	
angle	$[\textbf{-}\pi,\textbf{+}\pi]~(\mathrm{rad})$	Angle between the car direction and the direction of the track axis.	
curLapTime	$[0, +\infty)$ (s)	Time elapsed during current lap.	
damage	$[0,+\infty)$ (point)	$[0,+\infty)$ (point) Current damage of the car (the higher is the value the higher is the damage).	
distFromStart	$[0, +\infty)$ (m)	Distance of the car from the start line along the track line.	
distRaced	$[0, +\infty)$ (m)	Distance covered by the car from the beginning of the race	
focus	[0,200] (m)	Vector of 5 range finder sensors: each sensors returns the distance between the track edge and the car within a range of 200 meters. Sensor are affected by i.i.d. normal noises with a standard deviation equal to the 1% of sensors range. The sensors sample, every degree, a five degree space along a specific direction provided by the client (the direction is defined with the <i>focus</i> command and must be in the range $[-\pi/2, +\pi/2]$ w.r.t. the car axis). Focus sensors are not always available: they can be used only once per second of simulated time. When the car is outside of the track (i.e., pos is less than -1 or greater than 1), the focus direction is outside the allowed range $([-\pi/2, +\pi/2])$ or the sensors has been already used once in the last second, the returned values are not reliable (typically -1 is returned).	
fuel	$[0, +\infty)$ (1)	Current fuel level.	

Sensors (2)

gear	$\{-1,0,1,\cdots,7\}$	Current gear: -1 is reverse, 0 is neutral and the gear from 1 to 7.
lastLapTime	$[0, +\infty)$ (s)	Time to complete the last lap
opponents	[0,200] (m)	Vector of 36 opponent sensors: each sensor covers a span of $\pi/18$ (10 degrees) within a range of 200 meters and returns the distance of the closest opponent in the covered area. Sensor are affected by i.i.d. normal noises with a standard deviation equal to the 5% of sensors range. The 36 sensors covers all the space around the car, spanning clockwise from $+\pi$ up to $-\pi$ with respect to the car axis.
racePos	$\{1,2,\cdot\cdot\cdot,N\}$	Position in the race with to respect to other cars.
rpm	[2000,7000] (rpm)	Rumber of rotation per minute of the car engine.
speedX	$(-\infty, +\infty)$ (km/h)	Speed of the car along the longitudinal axis of the car.
speedY	$(-\infty, +\infty)$ (km/h)	Speed of the car along the transverse axis of the car.
speedZ	$(-\infty, +\infty)$ (km/h)	Speed of the car along the Z axis of the car.

Sensors (3)

track	[0,200] (m)	Vector of 19 range finder sensors: each sensors returns the distance between the track edge and the car within a range of 200 meters. Sensor are affected by i.i.d. normal noises with a standard deviation equal to the 5% of sensors range. The sensors sample the space in front of the car every 10 degrees, spanning clockwise from $+\pi/2$ up to $-\pi/2$ with respect to the car axis. When the car is outside of the track (i.e., pos is less than -1 or greater than 1), the returned values are not reliable.
trackPos	$(-\infty, +\infty) \qquad \begin{array}{l} \text{Distance between the car and the track axis. The value is} \\ (-\infty, +\infty) \end{array} \qquad \begin{array}{l} \text{Distance between the car and the track width: it is 0 when car is on} \\ \text{the axis, -1 when the car is on the right edge of the track} \\ \text{and +1 when it is on the left edge of the car. Values greater} \\ \text{than 1 or smaller than -1 means that the car is outside of} \\ \text{the track.} \end{array}$	
wheelSpinVel	$[0,+\infty]$ (rad/s)	Vector of 4 sensors representing the rotation speed of wheels.
z	$[-\infty, +\infty]$ (m)	Distance of the car mass center from the surface of the track along the Z axis.

Main Effectors

- □ Basically 4 main effectors
 - Steering wheel [-1,+1]
 - ▶ Gas pedal [0, +1]
 - Brake pedal [0,+1]
 - Gearbox {-1,0,1,2,3,4,5,6,7}

Effectors

Name	Range	Description
accel	[0,1]	Virtual gas pedal (0 means no gas, 1 full gas).
brake	[0,1]	Virtual brake pedal (0 means no brake, 1 full brake).
clutch	[0,1]	Virtual clutch pedal (0 means no clutch, 1 full clutch).
gear	$-1,0,1,\cdot\cdot,7$	Gear value.
steering	[-1,1]	Steering value: -1 and +1 means respectively full right and left, that corresponds to an angle of 0.785398 rad.
focus	[-90,90]	Focus direction (see the <i>focus</i> sensors in Table 1) in degrees.
meta	0,1	This is meta-control command: 0 do nothing, 1 ask compe- tition server to restart the race.